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Solutions

1) (10 points) Two uniformly-charged infinite planes, carrying positive surface charge densities o1 =
309 and o9 = 40y, intersect along the z-axis, separating space into four regions. In terms of oy,
find the electric field’s magnitude in region I.
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Solution We are always free to choose to work in whatever coordinate system is most convenient.
In this problem, it is natural to choose axes parallel to the planes,
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Then, the field components are
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and the field magnitude is
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2) (10 points) Three identical particles of mass m and charge ¢ > 0 are located on the z-axis. The
particles located at x = 4a remain stationary. The particle located at the origin initially has
velocity vy directed at an angle # above the z-axis. Find its speed v; in the limit as it moves
infinitely far from the origin.



Solution Throughout the particle’s motion, total mechanical energy is conserved,
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Note that the potential energy due to the interaction between the two fixed charges, kq?/2a, remains
constant and could have been neglected in our calculation. Solving for vy,
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You can think of this as the initial potential energy of the interaction between the mobile charge
and the two fixed charges, 2kq?/a, being totally converted to additional kinetic energy as the mobile
charge flies off to infinity. [ |

3) (10 points) Two identical parallel-plate capacitors, each having gap dy, are connected to battery
Vb, as shown. The total energy stored in the capacitors is Uy. We then entirely fill one of the
capacitor’s gaps with dielectric x while increasing the other capacitor’s gap to d;. Find d; such
that the total energy stored doesn’t change, U; = Uj.
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Solution Take the initial individual capacitance values to be C. The initial equivalent capaci-
tance of the two capacitors wired in series is
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Using Cplate = k€0A/d, the individual capacitors change as C — kC and C — dyC/d;. Then, the
final equivalent series capacitance is
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Using U = CV§/2,
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As a consistency check, k = 1 gives d; = dj, as expected. [ |

4) (10 points) Take Vo = 12 V, Ry =3 Q, Ry, = 2 Q, R3 = 6 . Find each resistor’s potential
difference, current, and power dissipation.
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Solution We use the tabular method. Resistors R; and Rj3 are in parallel, so we replace them
with resistor R4. Then, resistors R, and R, are in series, so we replace them with resistor Rs.

Rs

R2 R3 R2

i Vi(V) L(A) Ri(Q) B (W)
1 6 2 3 12
2 6 3 2 18
3 6 1 6 6
4 6 3 2 18
5 12 3 4 36

Steps I took in filling out the table:

1. Ry, Ry, and Rj3 are given.
2. R4 = R1R3/(R1 + R3)
3. Rs=Ry+ Ry
4. Vs =V =12V
5. V5 = I5Rs. In a row, whenever we see that two out of three V', I, or R columns are determined,
we can find the third value via V = IR.
6. I = I, = I5. Series resistors carry the same current as their equivalent resistor.
7. Determine V5 and V; via V = IR.
8. Vi = V3 = V,. Parallel resistors have the same potential difference as their equivalent resistor.
9. Determine I; and I5 via V = IR.
10. P, =V;I;
To check our work, we confirm that P, + P, + P3 = P, + P, = Ps. [ |

5) (10 points) In the circuit below, current source I maintains a steady current of I3 in the middle
branch. Find I; and I; in terms of I5.
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Solution We have two unknowns, I; and I, so we need two independent equations.

1.

The junction rule gives
ZIin = ZIout = L+ 1=1I3



2. For a clockwise loop around the circuit’s perimeter, the loop rule gives

Y (AV);=0 = —LRy+V;—Vi+3LRy =0 = L, =30

Solving these two equations yields | I; = 3I3/4|and | [, = I3/4|.

Why did we not choose the left or right loops? Recall that voltage sources provide a varying current
while maintaining a constant potential difference, and current sources provide a varying potential
difference while maintaining a steady current. We went around the circuit’s perimeter to avoid the
unknown potential difference across the current source.

If we insist upon using the the loop rule around the circuit’s left loop, then we must introduce the
potential difference V; across the current source. Taking V; to be polarized in the direction of I3,
traversing clockwise,

—LRy+W+Vr=0.

Now that we have an extra unknown, we need an additional independent equation. Traversing the
right loop counterclockwise,
—3LRy+Vo+Vr=0.

Subtracting these two equations,
—I1 Ry 4+ 31:Ry =0,

which is the same as the equation obtained from going around the circuit’s perimeter, finally leading
to the solution obtained more directly above.
[

6) (10 points) Infinite straight-line current [ is parallel to the z-axis and intercepts the positive y-axis
at y = a. A particle of charge ¢ > 0, located on the positive z-axis at £ = b, has velocity vy along
the positive z-direction. The magnetic force F acting on q is directed out-of-the-page. What is the
magnitude of this force?

Solution Using the right-hand rule, the magnetic field circulates counter-clockwise about I,
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Angles 6 and 6 are complementary, which allows us to easily evaluate sin 6 in terms of the right-
triangle,
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F = quyBsin = quyB cos§ = oy = 5= 2m(a® + b?)

where we used the Pythagorean theorem, s? = a? + b2 [ |



7) (10 points) A slidewire circuit, of resistance R and capacitance C, is immersed in a uniform static
magnetic field By, which is directed out-of-the-page. The slidewire, of length a, is pulled to the
right at constant speed vg. Initially, at time ¢ = 0, the capacitor is uncharged. As a function of
time, find the force F(t) with which you must pull on the slidewire to maintain its speed.
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Solution The magnetic field does not vary over time, so the induced emf is purely motional.
We could find the magnitude of the emf using Faraday’s flux rule, but we recognize our standard
slidewire configuration, where the slidewire’s velocity vy, the slidewire’s direction along its length
a, and the magnetic field By are all mutually perpendicular. From the cheat sheet, the resulting
motional emf is &, = vpaBy. Furthermore, Lenz’s law indicates that the induced emf is polarized
clockwise, so that the induced current’s magnetic field points into the plane. The equivalent circuit
is
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This is our basic RC' charging circuit. Initially, when the capacitor is uncharged, the potential
difference across resistor R is equal to &,,. Using Ohm’s law, the initial current is Iy = &,,/R. As
the capacitor charges, the current through the circuit decays with time constant 7 = RC,

I(t) = Ipe ",

Because the current flows clockwise, magnetic force acting on the slidewire is to the left. To
maintain the slidewire’s constant speed, this magnetic force must be balanced by the force of our
hand pulling the slidewire toward the right. The magnitude of this force is thus
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voa” By o—t/RC

F(t) = I(t)aBo = IoG,B()e_t/T = R

Note that the required force decays down to zero! This is in contrast to the capacitorless slidewire
circuit, which requires a constant force for all time. It is helpful to analyze this problem in terms
of work and energy.

Without a capacitor, the steady force and power required is

24232 £2
F()—T and P0=F0’Uo=UOR 0 =Em=
Therefore, all the mechanical power provided by pulling on the slidewire is dissipated in the resistor,

lost as thermal energy. The current remains steady, so the necessary force also remains steady.
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With a capacitor, a portion of the mechanical power goes toward dissipation in the resistor, but
the remaining portion goes toward charging the capacitor. Moreover, as the capacitor’s potential
difference approaches the value of the emf, current flow through the circuit slows. Therefore, the
necessary force decays toward zero.

What fraction of the total mechanical power provided goes into charging the capacitor?

Final capacitor energy B Can /2 _ RC [ /oo Jt/RC dt] —1 B 1
Total mechanical work  [° P(t)dt 2 Lo B

8) (10 points) A semipermeable membrane allows an ion species of positive charge ¢ to freely diffuse
into and out of a cell. It is found that the ion’s extracellular concentration c,y is greater than its
intracellular concentration c,.

a) The Nernst potential describes the electric field needed to balance diffusion. First, recalling
that Inz > 0 for > 1, mathematically determine the sign of Vemst = (k87/q) In(cout/cin). Then,
using physical reasoning, briefly explain why this is so. You may include a sketch in your explana-
tion.

b) At a lower temperature, how does the magnitude of the Nernst potential change? Again,
do this first mathematically and then explain why this is so.

¢) You measure the actual cell membrane potential Vi, and find that it does not agree with
the Vierst Of this ion species, so that there is net diffusion of the ion. Speculate about what might
be happening.

Solution
a) To determine the sign of the Nernst potential, we look at the signs of its factors:

e The Boltzmann constant kg is positive.

e The temperature T is the absolute temperature, so it is positive.
o The ion’s charge ¢ was assumed to be positive.

o Because cout > Cin, then cout/cin > 1 so that In(cout/cin) > 0.

Each of its factors is positive, s0 Viemst itself is positive.
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The ions tend to diffuse inward, down their concentration gradient. The Nernst potential describes
the electric field E that would be needed to balance diffusion. Because the ions are positively



charged, E should point outward, so that the ions feel an outward electrostatic force. Because the
electric potential drops along the direction of the electric field, the electric potential must be higher
in the cell’s interior. Furthermore, by convention, V,,; = 0, and we conclude Viemst > 0.

b) The Nernst potential is directly proportional to absolute temperature 7. Therefore, the mag-
nitude of the Nernst potential decreases with temperature. Physically, at lower temperature, the
microscopic motion of the ions slows. The process of diffusion, where the ions randomly approach
and pass through the pores from either side, also slows. Therefore, we don’t need as large of an
electric field and its concomittant potential difference to balance diffusion at lower temperature.

c) As we have assumed the ions can freely diffuse across the membrane, the actual electric field is
not balancing the ions’ diffusion. We say that the ion concentrations are “off-equilibrium,” which
typically would need an additional active participant to maintain. In lecture, we discussed one pos-
sibility being an ion-exchange pump, which is responsible for at least half of the ATP consumed in
neurons. Note that maintaining these off-equilibrium concentrations is critical to keeping a resting
neuron in a state ready for firing. [ |

9) (10 points) Take ¢ to be the angular position of a polarizing filter’s transmission axis, as shown in
the xy plane. Collimated unpolarized light of intensity I, propagates along the z-axis. Find a se-
quence of polarizing filters of varying angular positions (¢1, ¢, . . ., ¢n) that will yield horizontally
polarized light (¢ = 0°) of intensity /8. You may use however many polarizers you need.

Solution After passing through the first polarizer, the intensity is I/2, regardless of polarizer
angle. The transmitted intensity following any subsequent polarizer is equal to the product of
the incident intensity and cos? 6, where @ is the angle between the filter’s transmission axis and
the incident light’s polarization. Also, ¢ = 0° and ¢ = 180° describe the same filter. Note that
cos?45° = 1/2 and cos? 60° = 1/4.

Possible solutions include:
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10) (10 points) Consider a photoelectric effect apparatus. We find that, for light of wavelength \g, the
stopping potential is V. Suppose we then cut the wavelength in half. In terms of Ay and V4, what
is the new stopping potential?



Solution Using ¢ = f)\, we express the photon’s energy in terms of wavelength instead of fre-
quency, E, = hf = hc/)\. Before and after changing wavelengths, A\; = \¢/2, we have

hc hc
e%:/\_o_q)o and eVlz)\—l—q)o.

The metal’s work function is unknown, so let’s subtract the two equations to eliminate it,
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When we cut the wavelength in half, each photon’s energy increases by an amount hc/\,. Subse-
quently, the maximum kinetic energy of ejected electrons increases by the same amount, for which
the additional stopping potential exactly compensates. [ |



