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Solutions
1) (10 points) Two uniformly-charged infinite planes, carrying positive surface charge densities σ1 =

3σ0 and σ2 = 4σ0, intersect along the z-axis, separating space into four regions. In terms of σ0,
find the electric field’s magnitude in region I.
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Solution We are always free to choose to work in whatever coordinate system is most convenient.
In this problem, it is natural to choose axes parallel to the planes,
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Then, the field components are

E1x = σ1

2ϵ0
E2x = 0

E1y = 0 E2y =
σ2

2ϵ0

=⇒
Ex = E1x + E2x = 3σ0

2ϵ0
Ey = E1y + E2y =

4σ0

2ϵ0

and the field magnitude is

E =
√
E2

x + E2
y = σ0

2ϵ0
√
32 + 42 = 5σ0

2ϵ0

■

2) (10 points) Three identical particles of mass m and charge q > 0 are located on the x-axis. The
particles located at x = ±a remain stationary. The particle located at the origin initially has
velocity v0 directed at an angle θ above the x-axis. Find its speed v1 in the limit as it moves
infinitely far from the origin.
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Solution Throughout the particle’s motion, total mechanical energy is conserved,

U0 +K0 = U1 +K1 =⇒
�
�
�kq2

2a + 2kq
2

a
+ 1

2mv20 =
�
�
�kq2

2a + 1
2mv21.

Note that the potential energy due to the interaction between the two fixed charges, kq2/2a, remains
constant and could have been neglected in our calculation. Solving for v1,

v1 =
√
v20 +

4kq2
ma

=
√
v20 +

q2

πϵ0ma

You can think of this as the initial potential energy of the interaction between the mobile charge
and the two fixed charges, 2kq2/a, being totally converted to additional kinetic energy as the mobile
charge flies off to infinity. ■

3) (10 points) Two identical parallel-plate capacitors, each having gap d0, are connected to battery
V0, as shown. The total energy stored in the capacitors is U0. We then entirely fill one of the
capacitor’s gaps with dielectric κ while increasing the other capacitor’s gap to d1. Find d1 such
that the total energy stored doesn’t change, U1 = U0.

V0

Solution Take the initial individual capacitance values to be C. The initial equivalent capaci-
tance of the two capacitors wired in series is

C0 =
C · C
C + C

= C

2 .

Using Cplate = κϵ0A/d, the individual capacitors change as C → κC and C → d0C/d1. Then, the
final equivalent series capacitance is

C1 =
(κC) · (d0C/d1)
κC + (d0C/d1)

= C
κ · (d0/d1)
κ+ (d0/d1)

= C
κd0

κd1 + d0
.

Using U = CV 2
0 /2,

1 = U1

U0
= C1

C0
= 2κd0

κd1 + d0
=⇒ κd1 + d0 = 2κd0 =⇒ d1 = d0

(
2− 1

κ

)
= d0

(2κ− 1
κ

)
As a consistency check, κ = 1 gives d1 = d0, as expected. ■

4) (10 points) Take V0 = 12 V, R1 = 3 Ω, R2 = 2 Ω, R3 = 6 Ω. Find each resistor’s potential
difference, current, and power dissipation.
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Solution We use the tabular method. Resistors R1 and R3 are in parallel, so we replace them
with resistor R4. Then, resistors R2 and R4 are in series, so we replace them with resistor R5.

V0

R2 R3

R1 −→ V0

R2

R4 −→ V0 R5

i Vi (V) Ii (A) Ri (Ω) Pi (W)

1 6 2 3 12
2 6 3 2 18
3 6 1 6 6
4 6 3 2 18
5 12 3 4 36

Steps I took in filling out the table:
1. R1, R2, and R3 are given.
2. R4 = R1R3/(R1 +R3)
3. R5 = R2 +R4
4. V5 = V0 = 12 V
5. V5 = I5R5. In a row, whenever we see that two out of three V , I, or R columns are determined,

we can find the third value via V = IR.
6. I2 = I4 = I5. Series resistors carry the same current as their equivalent resistor.
7. Determine V2 and V4 via V = IR.
8. V1 = V3 = V4. Parallel resistors have the same potential difference as their equivalent resistor.
9. Determine I1 and I3 via V = IR.
10. Pi = ViIi

To check our work, we confirm that P1 + P2 + P3 = P2 + P4 = P5. ■

5) (10 points) In the circuit below, current source I maintains a steady current of I3 in the middle
branch. Find I1 and I2 in terms of I3.
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Solution We have two unknowns, I1 and I2, so we need two independent equations.
1. The junction rule gives ∑

Iin =
∑

Iout =⇒ I1 + I2 = I3



2. For a clockwise loop around the circuit’s perimeter, the loop rule gives∑
(∆V )i = 0 =⇒ −I1R0 + V0 − V0 + 3I2R0 = 0 =⇒ I1 = 3I2

Solving these two equations yields I1 = 3I3/4 and I2 = I3/4 .
Why did we not choose the left or right loops? Recall that voltage sources provide a varying current
while maintaining a constant potential difference, and current sources provide a varying potential
difference while maintaining a steady current. We went around the circuit’s perimeter to avoid the
unknown potential difference across the current source.

If we insist upon using the the loop rule around the circuit’s left loop, then we must introduce the
potential difference VI across the current source. Taking VI to be polarized in the direction of I3,
traversing clockwise,

−I1R0 + V0 + VI = 0.
Now that we have an extra unknown, we need an additional independent equation. Traversing the
right loop counterclockwise,

−3I2R0 + V0 + VI = 0.
Subtracting these two equations,

−I1R0 + 3I2R0 = 0,
which is the same as the equation obtained from going around the circuit’s perimeter, finally leading
to the solution obtained more directly above.

■

6) (10 points) Infinite straight-line current I is parallel to the z-axis and intercepts the positive y-axis
at y = a. A particle of charge q > 0, located on the positive x-axis at x = b, has velocity v0 along
the positive x-direction. The magnetic force F acting on q is directed out-of-the-page. What is the
magnitude of this force?
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Solution Using the right-hand rule, the magnetic field circulates counter-clockwise about I,
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Angles θ and θ are complementary, which allows us to easily evaluate sin θ in terms of the right-
triangle,

F = qv0B sin θ = qv0B cos θ = qv0
µ0I

2πs · b
s
= qv0µ0Ib

2π(a2 + b2)

where we used the Pythagorean theorem, s2 = a2 + b2. ■



7) (10 points) A slidewire circuit, of resistance R and capacitance C, is immersed in a uniform static
magnetic field B0, which is directed out-of-the-page. The slidewire, of length a, is pulled to the
right at constant speed v0. Initially, at time t = 0, the capacitor is uncharged. As a function of
time, find the force F (t) with which you must pull on the slidewire to maintain its speed.
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Solution The magnetic field does not vary over time, so the induced emf is purely motional.
We could find the magnitude of the emf using Faraday’s flux rule, but we recognize our standard
slidewire configuration, where the slidewire’s velocity v0, the slidewire’s direction along its length
a, and the magnetic field B0 are all mutually perpendicular. From the cheat sheet, the resulting
motional emf is Em = v0aB0. Furthermore, Lenz’s law indicates that the induced emf is polarized
clockwise, so that the induced current’s magnetic field points into the plane. The equivalent circuit
is

Em

C

R

This is our basic RC charging circuit. Initially, when the capacitor is uncharged, the potential
difference across resistor R is equal to Em. Using Ohm’s law, the initial current is I0 = Em/R. As
the capacitor charges, the current through the circuit decays with time constant τ = RC,

I(t) = I0e
−t/τ .

Because the current flows clockwise, magnetic force acting on the slidewire is to the left. To
maintain the slidewire’s constant speed, this magnetic force must be balanced by the force of our
hand pulling the slidewire toward the right. The magnitude of this force is thus

F (t) = I(t)aB0 = I0aB0e
−t/τ = v0a

2B2
0

R
e−t/RC

Note that the required force decays down to zero! This is in contrast to the capacitorless slidewire
circuit, which requires a constant force for all time. It is helpful to analyze this problem in terms
of work and energy.

Without a capacitor, the steady force and power required is

F0 =
v0a

2B2
0

R
and P0 = F0v0 =

v20A
2B2

0
R

= E2
m

R
= I20R.

Therefore, all the mechanical power provided by pulling on the slidewire is dissipated in the resistor,
lost as thermal energy. The current remains steady, so the necessary force also remains steady.



With a capacitor, a portion of the mechanical power goes toward dissipation in the resistor, but
the remaining portion goes toward charging the capacitor. Moreover, as the capacitor’s potential
difference approaches the value of the emf, current flow through the circuit slows. Therefore, the
necessary force decays toward zero.

What fraction of the total mechanical power provided goes into charging the capacitor?

Final capacitor energy
Total mechanical work = CE2

m/2∫∞
0 P (t) dt =

RC

2

[∫ ∞

0
e−t/RC dt

]−1
= 1

2

■

8) (10 points) A semipermeable membrane allows an ion species of positive charge q to freely diffuse
into and out of a cell. It is found that the ion’s extracellular concentration cout is greater than its
intracellular concentration cin.

a) The Nernst potential describes the electric field needed to balance diffusion. First, recalling
that ln x > 0 for x > 1, mathematically determine the sign of VNernst = (kBT/q) ln(cout/cin). Then,
using physical reasoning, briefly explain why this is so. You may include a sketch in your explana-
tion.

b) At a lower temperature, how does the magnitude of the Nernst potential change? Again,
do this first mathematically and then explain why this is so.

c) You measure the actual cell membrane potential Vmem and find that it does not agree with
the VNernst of this ion species, so that there is net diffusion of the ion. Speculate about what might
be happening.
Solution
a) To determine the sign of the Nernst potential, we look at the signs of its factors:
• The Boltzmann constant kB is positive.
• The temperature T is the absolute temperature, so it is positive.
• The ion’s charge q was assumed to be positive.
• Because cout > cin, then cout/cin > 1 so that ln(cout/cin) > 0.

Each of its factors is positive, so VNernst itself is positive.
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The ions tend to diffuse inward, down their concentration gradient. The Nernst potential describes
the electric field E that would be needed to balance diffusion. Because the ions are positively



charged, E should point outward, so that the ions feel an outward electrostatic force. Because the
electric potential drops along the direction of the electric field, the electric potential must be higher
in the cell’s interior. Furthermore, by convention, Vout = 0, and we conclude VNernst > 0.

b) The Nernst potential is directly proportional to absolute temperature T . Therefore, the mag-
nitude of the Nernst potential decreases with temperature. Physically, at lower temperature, the
microscopic motion of the ions slows. The process of diffusion, where the ions randomly approach
and pass through the pores from either side, also slows. Therefore, we don’t need as large of an
electric field and its concomittant potential difference to balance diffusion at lower temperature.

c) As we have assumed the ions can freely diffuse across the membrane, the actual electric field is
not balancing the ions’ diffusion. We say that the ion concentrations are “off-equilibrium,” which
typically would need an additional active participant to maintain. In lecture, we discussed one pos-
sibility being an ion-exchange pump, which is responsible for at least half of the ATP consumed in
neurons. Note that maintaining these off-equilibrium concentrations is critical to keeping a resting
neuron in a state ready for firing. ■

9) (10 points) Take φ to be the angular position of a polarizing filter’s transmission axis, as shown in
the xy plane. Collimated unpolarized light of intensity I0 propagates along the z-axis. Find a se-
quence of polarizing filters of varying angular positions (φ1, φ2, . . . , φN) that will yield horizontally
polarized light (φN = 0◦) of intensity I0/8. You may use however many polarizers you need.
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Solution After passing through the first polarizer, the intensity is I0/2, regardless of polarizer
angle. The transmitted intensity following any subsequent polarizer is equal to the product of
the incident intensity and cos2 θ, where θ is the angle between the filter’s transmission axis and
the incident light’s polarization. Also, φ = 0◦ and φ = 180◦ describe the same filter. Note that
cos2 45◦ = 1/2 and cos2 60◦ = 1/4.

Possible solutions include:

(60◦, 0◦) →
(
I0
2 ,

I0
2 cos2 60◦ = I0

8

)
(90◦, 45◦, 0◦) →

(
I0
2 ,

I0
2 cos2 45◦ = I0

4 ,
I0
4 cos2 45◦ = I0

8

)
(90◦, 135◦, 180◦) →

(
I0
2 ,

I0
2 cos2 45◦ = I0

4 ,
I0
4 cos2 45◦ = I0

8

)

■

10) (10 points) Consider a photoelectric effect apparatus. We find that, for light of wavelength λ0, the
stopping potential is V0. Suppose we then cut the wavelength in half. In terms of λ0 and V0, what
is the new stopping potential?



Solution Using c = fλ, we express the photon’s energy in terms of wavelength instead of fre-
quency, Eγ = hf = hc/λ. Before and after changing wavelengths, λ1 = λ0/2, we have

eV0 =
hc

λ0
− Φ0 and eV1 =

hc

λ1
− Φ0.

The metal’s work function is unknown, so let’s subtract the two equations to eliminate it,

V1 − V0 =
hc

e

( 1
λ1

− 1
λ0

)
= hc

eλ0
(2− 1) =⇒ V1 = V0 +

hc

eλ0

When we cut the wavelength in half, each photon’s energy increases by an amount hc/λ0. Subse-
quently, the maximum kinetic energy of ejected electrons increases by the same amount, for which
the additional stopping potential exactly compensates. ■


