

- Wait until instructed to begin.
- This exam is closed-book, with no external notes or scratch paper, and no electronic devices.
- Use this coversheet for scratch work. *If* needed, extra scratch paper is available.
- If your work continues on the scratch page, then make a note in your solution.
- You may unstaple your exam, but please keep the pages in order and include this coversheet.
- Present your photo ID when you hand in your exam.

$$
E|Ectric field
$$
\n
$$
k = \frac{1}{4\pi\epsilon_0} \qquad |F| = \frac{1}{4\pi\epsilon_0} \frac{|q_1 q_2|}{r^2}
$$
\n
$$
E(x, y, z) = \frac{F_q(x, y, z)}{q}
$$
\n
$$
|E| = \frac{1}{4\pi\epsilon_0} \frac{|q|}{r^2}
$$
\n
$$
E| = \frac{1}{4\pi\epsilon_0} \frac{|Q_{\text{in}}(r)|}{r^2}
$$
\n
$$
\sigma = Q/A \qquad |E| = \frac{|Q_{\text{in}}(r)|}{2\epsilon_0}
$$
\n
$$
p = qd \qquad \tau = pE \sin \phi
$$
\n
$$
E_{\text{axis}} \approx \frac{1}{4\pi\epsilon_0} \frac{2p}{r^3}
$$
\n
$$
E_{\text{plane}} \approx -\frac{1}{4\pi\epsilon_0} \frac{p}{r^3}
$$
\n
$$
V = \sum_{i} \frac{1}{4\pi\epsilon_0} \frac{q_i}{r_i}
$$
\n
$$
U = -pE \cos \phi \qquad V = \frac{p \cos \theta}{4\pi\epsilon_0 r^2}
$$
\n
$$
U_0 + K_0 = U_1 + K_1 \qquad 0 = \sum_{\text{loop}} (\Delta V)_i
$$
\n
$$
Q = VC
$$
\n
$$
Q = VC
$$
\n
$$
Q = \frac{QV}{2C} = \frac{CV^2}{2} \qquad u_E = \frac{k\epsilon_0 A}{2\pi\epsilon_0 E^2}
$$
\n
$$
C_p = C_1 + C_2 + \cdots \qquad 1/C_s = 1/C_1 + 1/C_2 + \cdots
$$
\n
$$
E = E_0/\kappa \qquad \qquad C = \kappa C_0
$$
\n
$$
E = E_0/\kappa \qquad \qquad C = \kappa C_0
$$
\n
$$
E = \frac{\mu L}{\Delta} \qquad V = IR
$$
\n
$$
I_{\text{rms}} = I_0/\sqrt{2} \qquad V_{\text{rms}} = V_0/\sqrt{2}
$$
\n
$$
P = VI = V^2/R = I^2R
$$
\n
$$
P_{\text{avg}} = V_{\text{rms
$$

 $R_s = R_1 + R_2 + \cdots$ $1/R_p = 1/R_1 + 1/R_2 + \cdots$

 $\Delta B = \frac{\mu_0}{4}$ 4*π I*∆*x* sin *θ* $\frac{x \sin \theta}{r^2}$ $B_{\text{wire}} = \frac{\mu_0 I}{2\pi s}$ 2*πs* $B_{\text{loop}} = \frac{\mu_0 I}{2\pi}$ 2*a* $B_{\rm sol} = \mu_0 nI$ $n = N/L$ **B**_{axis} = $\frac{\mu_0}{4\pi}$ 4*π* 2**m** *d* 3 $m = IA$ $\tau = mB\sin\theta$ $U = -mB\cos\theta$ $F = |q|vB\sin\alpha$ $F = I\ell B\sin\alpha$ *r* = $mv/(qB)$ *f* = $qB/(2\pi m)$ Magnetic fields and forces

Electrodynamics

$$
\mathcal{E} = -\frac{\Delta \Phi}{\Delta t} \qquad \qquad \Phi = AB \cos \theta
$$

$$
\mathcal{E}_m = v \ell B
$$

- Mechanics

$$
v = v_0 + at
$$

\n
$$
x = x_0 + v_0t + at^2/2
$$

\n
$$
v^2 = v_0^2 + 2a(x - x_0)
$$

\n
$$
a_c = v^2/r
$$

\n
$$
K = mv^2/2
$$

\n
$$
W = F_x \Delta x = -\Delta U
$$

Miscellaneous

$$
\sin \theta = \frac{\text{opp}}{\text{hyp}} \quad \cos \theta = \frac{\text{adj}}{\text{hyp}} \quad \tan \theta = \frac{\text{opp}}{\text{adj}}
$$
\n
$$
a^2 + b^2 = c^2 \quad ; \quad a^2 + b^2 - 2ab \cos \gamma = c^2
$$
\n
$$
\text{Sphere:} \quad A = 4\pi r^2 \quad V = (4/3)\pi r^3
$$
\n
$$
\text{Circle:} \quad C = 2\pi r \quad A = \pi r^2
$$
\n
$$
ax^2 + bx + c = 0 \implies x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
$$
\n
$$
\text{Change: C}
$$
\n
$$
\text{Electric field}: N/C = V/m
$$
\n
$$
\text{Electric potential}: V = J/C
$$
\n
$$
\text{Capacitance}: F = C/V
$$
\n
$$
M = 10^6, k = 10^3, m = 10^{-3}, \mu = 10^{-6}
$$

1) (25 points) A conducting material of resistivity ρ is formed into a rectangular block of side lengths a, 2*a*, and 3*a*, as shown below. A potential difference *V* is applied across one of the block's three pairs of parallel faces so that the power dissipation *P* is *maximized*. Find *P*.

2) (25 points) The capacitor in the circuit shown below is initially uncharged and the switch is in position *a*. At time $t = 0$, the switch is flipped to position *b*. At time $t = t_0$, the switch is flipped to position *c*. At time $t = 2t_0$, the switch is returned to position *a*. At time $t = 2t_0$, what is the energy stored on the capacitor?

3) (25 points) Three parallel infinite line currents, each perpendicular to the page, pass through the vertices of a square of side length a , shown below. Given I_0 and a , find I_1 such that the magnetic field vanishes at observation point *P*.

4) (25 points) A conducting wire in the shape of 45° - 45° - 90° triangle is in a uniform magnetic field, directed out-of-the-page with magnitude B_0 . The triangle's 90° corner remains fixed at the origin, as shown. At time *t*, the distance between the origin and the hypotenuse is equal to *vt*, so that the hypotenuse is traveling with speed *v*. Assuming the wire's resistance per unit length is equal to λ_0 , use any method to find the magnitude and direction of current $I(t)$ at time *t*.

