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Solutions

1) (10 points) Four charges are arranged at the corners of a square of side length a
√
2, as shown. Find

the magnitude of the electric field at the center of the square, taking q > 0.
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Solution In RP2-09, we saw that a good choice of coordinate system may provide a significantly
simplified solution. In this problem, let’s locate the charges along the x and y axes,
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Then, we avoid a lot of cosines and each field component depends only on two charges,

Ex = kq

a2
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So that
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√
E2

x + E2
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√
32 + 42 = 5kq
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■

2) (10 points) A particle of positive charge q and kinetic energy K is traveling horizontally when
it enters a region between two horizontal parallel plates, as shown. The plates, of length L, are
separated by a gap d and have a potential difference ∆V . Upon exiting the gap, the particle makes
an angle θ with respect to horizontal. Find an expression for θ.
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Solution There is no force in the horizontal direction, so the particle’s horizontal velocity, vx,
remains constant throughout the problem. The duration ∆t that the particle spends between the
plates is found from

L = vx∆t =⇒ ∆t = L

vx
.

In the gap, the particle feels a force of magnitude qE = q∆V/d upwards. Therefore, the particle’s
upward acceleration is ay = q∆V/(md). The particle’s vertical velocity, after it exits the gap, is

vy = ay∆t =
(
q∆V

md

)(
L

vx

)

Then,

tan θ = vy
vx

= qL∆V

dmv2x
=⇒ θ = arctan

(
qL∆V

2dK

)

where we have used K = mv2x/2. ■

3) (10 points) In the circuit below, E0 = 3 V, C1 = 6 µF, C2 = 2 µF, and C3 = 1 µF. Find each
capacitor’s potential difference, charge, and energy.

E0 C3
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Solution We can use the tabular method presented in the Week 3 lectures. Capacitors C2 and
C3 are in parallel, so we replace them with capacitor C4. Then, capacitors C1 and C4 are in series,
so we replace them with capacitor C5.

E0 C3

C1 C2

−→ E0 C4

C1

−→ E0 C5

i Qi (µC) Vi (V) Ci (µF) Ui (µJ)

1 6 1 6 3
2 4 2 2 4
3 2 2 1 2
4 6 2 3 6
5 6 3 2 9

Steps I took in filling out the table:
1. C1, C2, and C3 are given.
2. C4 = C2 + C3
3. C5 = [(1/C1) + (1/C4)]−1

4. V5 = E0 = 3 V



5. Q5 = V5C5. In a row, whenever we see that two out of three Q, V , or C columns are
determined, we can find the third value via Q = V C.

6. Q1 = Q4 = Q5. Series capacitors carry the same charge as their equivalent capacitor.
7. Determine V1 and V4 via Q = V C.
8. V2 = V3 = V4. Parallel capacitors have the same potential difference as their equivalent

capacitor.
9. Determine Q2 and Q3 via Q = V C.
10. Ui = QiVi/2
To check our work, we can confirm that U1 + U2 + U3 = U1 + U4 = U5. ■

4) (10 points) Consider a spherical conducting shell of resistivity ρ, radius r1, and shell thickness d1.
When we apply a potential difference between the shell’s inner and outer surfaces, a radial current
flows. a) Assuming a thin shell thickness d1 ≪ r1, find the electrical resistance R1 to radial current
flow through the shell. b) We uniformly stretch the sphere out to a larger radius r2 with a thinner
shell thickness d2 so that the new resistance is R2. Find an expression for R2/R1 in terms of r2
and r1.
Solution
a) With current flowing radially, the spherical shell acts as a wire of short length, L = d1, and
large cross section area, A = 4πr21,

R1 =
ρL

A
= ρd1

4πr21

b) The mass of the spherical shell doesn’t change when we stretch it out. Therefore, the volume
of the spherical shell doesn’t change,

V1 = V2 =⇒ 4πr21d1 = 4πr22d2 =⇒ d2
d1

= r21
r22
,

where we have made our usual approximation for the volume of a thin spherical shell. Then,

R2

R1
= ρd2

4πr22
· 4πr

2
1

ρd1
= d2

d1
· r

2
1
r22

= r41
r42

For example, if we double the radius, r2 = 2r1, then the shell’s resistance decreases by a factor
of 16. The reduction in wire length decreases the resistance by a factor of 4, and the increase in
wire cross-section decreases the resistance by another factor of 4. ■

5) (10 points) After installing the battery in the circuit below, we wait a long time for the capacitors
to fully charge. Find the the fully charged potential difference across each capacitor.
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Solution The key insight is that, after the capacitors are fully charged, no more current flows
into the capacitor branch. Then, the same current I flows through the battery and both resistors.
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Traversing the left loop clockwise,

E0 − IR0 − I2R0 =⇒ I = E0
3R0

The potential across the 2R0 resistor is then

VC = I · 2R0 =
E0
3R0

· 2R0 =
2
3E0.

Therefore, the total potential difference across the two capacitors, connected in series, is also equal
to 2E0/3, which we may diagram as

2
3E0 2C0

C0

−→ 2
3E0 C1

The equivalent capacitance C1 is found as

C1 =
( 1
C0

+ 1
2C0

)−1
=
( 3
2C0

)−1
= 2

3C0.

The charge on C1 is then
Q1 = V1C1 =

2E0
3 · 2C0

3 = 4
9E0C0

The charges on capacitors in series are equal to charge on their equivalent capacitor. Therefore,

VC0 =
Q1

C0
= 4

9E0 and V2C0 =
Q1

2C0
= 2

9E0

■

6) (10 points) A current 4I0 flows along the z-axis and a current 3I0 flows along the y-axis, as shown.
Find the magnitude of the resulting magnetic field at point P .
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Solution At point P , a distance a from the origin, the components of the magnetic field are

By =
µ04I0
2πa and Bz = −µ03I0

2πa .

Hence,

B =
√
B2

y +B2
z = µ0I0

2πa
√
42 + 32 = 5µ0I0

2πa
■



7) (10 points) A slidewire is in nonuniform magnetic field |B| = αx, where α is a positive constant.
You pull on the slidewire with constant velocity v, as shown. a) Find the magnitude and direction
of the resulting current. b) Find the magnetic drag force and the mechanical power your hand
must provide to maintain the velocity.
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Solution
a) Consider the slidewire beginning at time t and ending at t+∆t, a short time later. During this
time interval, the slidewire travels a distance ∆x = v∆t. The magnitude of the flux through the
loop increases by

|∆Φ| = B(x)∆A = (αvt)(a∆x) = (αvt)(av∆t) = αv2ta∆t

Then, the magnitude of the emf and the resulting current are

E =
∣∣∣∣∣∆Φ
∆t

∣∣∣∣∣ = αv2ta and I = E
R

= αv2ta

R
.

Interesting — the current increases linearly with time. The magnetic flux through the loop is in-
creasing out of the page. Therefore, by Lenz’s law, the induced current is clockwise to compensate
for the lost flux.
b) The magnetic drag force and mechanical power are

Fd = IaB = αv2ta2

R
· (αvt) = α2v3t2a2

R
and P = Fdv = α2v4t2a2

R

To check your work, you can confirm that P = I2R, showing that all the power dissipated in the
resistor is supplied by the force pulling on the slidewire. ■

8) (10 points) A semipermeable membrane of thickness d allows an ion species of positive charge q
to freely diffuse into and out of a cell while preventing all other species from passing. At tem-
perature T , the ion concentrations are in equilibrium, and it is noted that, inside the membrane,
there is a strong electric field E0 directed inward, into the cell. a) Find an expression for cout/cin in
terms of the given quantities. b) Is the ion concentration larger inside or outside the cell? Using
physical reasoning, including a sketch, briefly explain why this is so.
Solution
a) By convention, the electric potential outside the cell is zero. The electric field points inward, so
that the potential inside the cell, equal to the membrane potential, is negative,

Vmem = −E0d



We are told that the ion concentrations are in equilibrium. Therefore, the Nernst potential for the
ion species is equal to the membrane potential,

VNernst = Vmem =⇒ kT

q
ln
(
cout
cin

)
= −E0d =⇒ cout

cin
= e−qE0d/(kT )

b) Because q > 0, our result gives cout/cin < 1, so that the ion concentration is larger inside the
cell. It is very easy to get confused in these problems and be off by a sign. Therefore, we should
back our mathematical result with a little physical reasoning.
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We are told that the electric field points inward and that the ion species of interest has positive
charge. Our calculation showed that, at equilibrium, the inside ion concentration is higher than the
outside ion concentration, as shown above. The essential basis for equilibrium may be stated: “The
tendency for the ions to diffuse out of the cell, down their concentration gradient, is balanced by
the tendency for the ions to accelerate back into the cell, along the membrane’s electric field.” ■

9) (10 points) In a photoelectric demonstration lab, the maximum kinetic energy of photoelectrons
is K0. Reducing the wavelength of the incident light to half of its initial value increases the
maximum photoelectron kinetic energy to K1. a) What is the work function of the cathode?
b) What was the initial wavelength?
Solution This is essentially the same as RPF-18 (MP09-Q16).
a) The work-energy relations for both wavelengths are

Φ0 +K0 =
hc

λ0
and Φ0 +K1 =

hc

λ1

Using λ1 = λ0/2, we can solve for Φ0,

2(Φ0 +K0) = Φ0 +K1 =⇒ Φ0 = K1 − 2K0

b)

λ0 =
hc

Φ0 +K0
= hc

K1 −K0

■

10) (10 points) A particle of mass m is in a box of length L. The system is in contact with a heat
reservoir at temperature T . At what value of T is the particle exactly twice as likely to be in the
ground state rather than in the first excited state?



Solution At temperature T , the Boltzmann distribution gives the relative occupation probabili-
ties of the system’s energy states. A particle-in-a-box’s ground state corresponds to n = 1 and its
first excited state corresponds to n = 2. Then,

P2

P1
= e−E2/(kT )

e−E1/(kT ) = e−∆E/(kT )

where
∆E = E2 − E1 =

h2

8mL2 (2
2 − 12) = 3h2

8mL2 .

Setting P1 = 2P2,

e−∆E/(kT ) = 1
2 =⇒ −∆E

kT
= ln

(1
2

)
=⇒ ∆E

kT
= ln 2 =⇒ T = ∆E

k ln 2 = 3h2

8mL2k ln 2

The occupation probabilities for the particle-in-a-box’s first four energy states, at temperature T ,
are shown below.
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