• Wait until instructed to begin.
• This exam is closed-book, with no external notes or scratch paper, and no electronic devices.
• Use this coversheet for scratch work. If needed, extra scratch paper is available.
• If your work continues on the scratch page, then make a note in your solution.
• You may unstaple your exam, but please keep the pages in order and include this coversheet.
• Have your photo ID available during the exam.
• Due to exam schedule conflicts, a few students will be taking this exam later this evening. Please do not discuss this exam until after 8AM Thursday.
Electric field

\[k = \frac{1}{4\pi\epsilon_0} \]
\[\mathbf{E}(x, y, z) = \frac{\mathbf{F}_d(x, y, z)}{q} \]
\[|\mathbf{E}| = \frac{1}{4\pi\epsilon_0} \frac{|q|}{r^2} \]
\[\mathbf{E}_\text{axis} \approx \frac{1}{4\pi\epsilon_0} \frac{2p}{r^3} \]
\[\mathbf{E}_\text{plane} \approx -\frac{1}{4\pi\epsilon_0} \frac{p}{r^3} \]

Capacitance

\[Q = VC \]
\[C = \frac{\kappa\epsilon_0 A}{d} \]
\[U = \frac{Q^2}{2C} = \frac{QV}{2} = \frac{CV^2}{2} \]
\[U_{\text{plate}} = \frac{1}{2\kappa\epsilon_0} E^2 \]
\[C_p = C_1 + C_2 + \cdots \]
\[1/C_s = 1/C_1 + 1/C_2 + \cdots \]
\[E = E_0/k \]
\[C = \kappa C_0 \]

Magnetic fields and forces

\[\Delta B = \frac{\mu_0 I \Delta x \sin \theta}{2\pi} \]
\[B_{\text{wire}} = \frac{\mu_0 I}{2\pi} \]
\[B_{\text{loop}} = \frac{\mu_0 I}{2a} \]
\[B_{\text{sol}} = \mu_0 n I \]
\[n = N/L \]
\[B_{\text{axis}} = \frac{\mu_0 2m}{4\pi d^3} \]
\[m = m A \]
\[\tau = mB \sin \theta \]
\[U = -mB \cos \theta \]
\[F = |q| vB \sin \alpha \]
\[F = IlB \sin \alpha \]
\[r = mv/(qB) \]
\[f = qB/(2\pi m) \]

Electric potential

\[U = qV \]
\[E_s \approx -\Delta V/\Delta s \]
\[V = \sum \frac{q_i}{4\pi\epsilon_0 r_i} \]
\[U = \frac{1}{4\pi\epsilon_0} \sum \frac{q_i q_j}{r_{ij}} \]
\[V = -E_0 x \]
\[U = -qE_0 x \]
\[U = -pE \cos \phi \]
\[V = \frac{p \cos \theta}{4\pi\epsilon_0 r^2} \]
\[U_0 + K_0 = U_1 + K_1 \]
\[0 = \sum_{\text{loop}} (\Delta V)_i \]

Current and resistance

\[R = \frac{\rho L}{A} \]
\[V = IR \]
\[I_{\text{rms}} = I_0/\sqrt{2} \]
\[V_{\text{rms}} = V_0/\sqrt{2} \]
\[P = VI = V^2/R = I^2R \]
\[P_{\text{avg}} = V_{\text{rms}} I_{\text{rms}} = V_{\text{rms}}^2/R = I_{\text{rms}}^2R \]

\[\sum I_{\text{in}} = \sum I_{\text{out}} \]
\[0 = \sum \Delta V_i \]
\[\tau = RC \]
\[I(t) = I_0 e^{-t/\tau} \]
\[V_d(t) = V_0 e^{-t/\tau} \]
\[V_c(t) = V_0 (1 - e^{-t/\tau}) \]
\[R_s = R_3 + R_2 + \cdots \]
\[1/R_p = 1/R_1 + 1/R_2 + \cdots \]

Mechanics

\[v = v_0 + at \]
\[x = x_0 + v_0 t + at^2/2 \]
\[v^2 = v_0^2 + 2a(x - x_0) \]
\[a_c = v^2/r \]
\[K = m v^2/2 \]
\[W = F_x \Delta x = -\Delta U \]
1) (10 points) Four charges are arranged at the corners of a square of side length $a\sqrt{2}$, as shown. Find the magnitude of the electric field at the center of the square, taking $q > 0$.

2) (10 points) A particle of positive charge q and kinetic energy K is traveling horizontally when it enters a region between two horizontal parallel plates, as shown. The plates, of length L, are separated by a gap d and have a potential difference ΔV. Upon exiting the gap, the particle makes an angle θ with respect to horizontal. Find an expression for θ.
3) (10 points) In the circuit below, $\mathcal{E}_0 = 3$ V, $C_1 = 6$ μF, $C_2 = 2$ μF, and $C_3 = 1$ μF. Find each capacitor’s potential difference, charge, and energy.
4) (10 points) Consider a spherical conducting shell of resistivity ρ, radius r_1, and shell thickness d_1. When we apply a potential difference between the shell’s inner and outer surfaces, a radial current flows. a) Assuming a thin shell thickness $d_1 \ll r_1$, find the electrical resistance R_1 to radial current flow through the shell. b) We uniformly stretch the sphere out to a larger radius r_2 with a thinner shell thickness d_2 so that the new resistance is R_2. Find an expression for R_2/R_1 in terms of r_2 and r_1.

5) (10 points) After installing the battery in the circuit below, we wait a long time for the capacitors to fully charge. Find the fully charged potential difference across each capacitor.

![Circuit Diagram](image)
6) (10 points) A current $4I_0$ flows along the z-axis and a current $3I_0$ flows along the y-axis, as shown. Find the magnitude of the resulting magnetic field at point P.

![Diagram of currents and point P](image)

7) (10 points) A slidewire is in nonuniform magnetic field $|\mathbf{B}| = \alpha x$, where α is a positive constant. You pull on the slidewire with constant velocity v, as shown. a) Find the magnitude and direction of the resulting current. b) Find the magnetic drag force and the mechanical power your hand must provide to maintain the velocity.

![Diagram of slidewire and magnetic field](image)
8) (10 points) A semipermeable membrane of thickness d allows an ion species of positive charge q to freely diffuse into and out of a cell while preventing all other species from passing. At temperature T, the ion concentrations are in equilibrium, and it is noted that, inside the membrane, there is a strong electric field E_0 directed inward, into the cell.

a) Find an expression for $c_{\text{out}}/c_{\text{in}}$ in terms of the given quantities.

b) Is the ion concentration larger inside or outside the cell? Using physical reasoning, including a sketch, briefly explain why this is so.
9) (10 points) In a photoelectric demonstration lab, the maximum kinetic energy of photoelectrons is K_0. Reducing the wavelength of the incident light to half of its initial value increases the maximum photoelectron kinetic energy to K_1. a) What is the work function of the cathode? b) What was the initial wavelength?

10) (10 points) A particle of mass m is in a box of length L. The system is in contact with a heat reservoir at temperature T. At what value of T is the particle exactly twice as likely to be in the ground state rather than in the first excited state?