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UCLA / Spring 2023 / Brian Naranjo

Solutions1

1) (10 points) A charge q is moving with velocity v = v0 cosα x̂+ v0 sinα ẑ in uniform magnetic field
B = B0x̂. If we want the particle to maintain the same velocity, what electric field should we
introduce?
Solution. To maintain the same velocity, we should introduce an electric field such that net force
on the particle is zero,

F = q(E+ v ×B) = 0 =⇒ E = −v ×B = −v0B sinα(ẑ× x̂) = −v0B sinα ŷ

2) (10 points) A square loop of side length a and resistance R is centered on the origin and is rotating
counterclockwise in the xy plane with angular velocity ω, as shown. If there is a magnetic field
B = B0 cosωt ẑ, find the magnitude and direction of the loop’s induced current.
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Solution. The loop’s rotation is irrelevant in applying Faraday’s flux rule, as the net flux through
the loop does not depend on the loop’s angle-of-rotation. The net emf is due to the electric field
induced by the time-varying magnetic field. This, however, does not mean that the motional emf
is zero throughout the loop. There are portions of the loop having a nonzero motional emf, but
the net motional emf along each side sums to zero.
Taking the loop orientation to be counterclockwise, the magnetic flux through the loop is

Φ(t) =

∫
S

B(t) · da = B0a
2 cosωt.

By Faraday’s flux rule, the loop’s emf is

E = −dΦ

dt
= B0a

2ω sinωt.

Using E = IR, the positive sense of current in the loop is counterclockwise and has magnitude

I(t) =
B0a

2ω

R
sinωt

Using Lenz’s law, we confirm the direction of the induced current. Just after t = 0, the flux is
decreasing in the ẑ direction, so that current is induced in the counterclockwise direction to restore
some of this lost flux, as predicted by Faraday’s flux rule.

1Though this pedagogical write-up is lengthy, these problems don’t involve lengthy calculations. Correct solutions
on the submitted exams are typically quite short.



3) (10 points) Consider two infinite sheets of tightly packed wires. In the lower sheet, located in the
plane y = 0, each wire is parallel to the z axis and carries current I in the positive z direction. In
the upper sheet, located in the plane y = a, each wire is also parallel to z axis but instead carries
current 2I in the negative z direction. Along the x direction, each sheet separately carries n wires
per unit length. Find the magnetic field B everywhere.
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Solution. Our strategy is to find, by Ampère’s law, the magnetic field about each sheet current
considered separately, and then combine the two fields, using the principle of superposition.
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Using the Amperian loop shown above, the magnetic field due to the lower sheet is

Bupper(y) =


−µ0nI

2
x̂ y > 0

µ0nI

2
x̂ y < 0
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Using the Amperian loop shown above, the magnetic field due to the upper sheet is

Blower(y) =

{
µ0nIx̂ y > a

−µ0nIx̂ y < a

Summing the two fields,

B(y) =



µ0nI

2
x̂ y > a

−3µ0nI

2
x̂ 0 < y < a

−µ0nI

2
x̂ y < 0

4) (15 points) In the circuit below, switch S is closed shut for a very long time, so that the currents
are steady. Then, at t = 0, the switch is abruptly opened. Find, by any method, the subse-
quent current IL(t) through the inductor, and indicate whether the current is flowing clockwise or
counterclockwise.
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Solution. For LRC transient problems in Physics 1C, we adopt a holistic method of solution.
Just before t = 0, the currents are steady, so that we can replace the inductor with a dead
short. The circuit’s effective resistance is obtained by adding the two resistors in parallel. We find
Reff = R/2. The current through the battery is then E0/Reff = 2E0/R and the current through the
inductor half of that.
An inductor’s induced emf acts to oppose changes in the current passing through the inductor. A
discontinuous change in current would be opposed with an infinite induced emf. Therefore, the
value of the inductor’s current is continuous across the closing of the switch, and we have

IL(t = 0) = I0 = E0/R,

flowing in the clockwise direction.
Once the switch is closed, we recognize that we have an LR circuit. As time goes on, energy
is dissipated in the two resistors and the current decays exponentially with time constant τL =
L/(2R), with the current reaching zero asymptotically as t → ∞.

Combining these observations, current flows in the clockwise direction, with

IL(t > 0) = I0e
−t/τL ,

where
I0 = E0/R and τL = L/(2R) .

5) (15 points) A current I flows clockwise in the loop shown below. Using the Biot-Savart law, write
a derivation for the magnetic field B at the origin.
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Solution. The Biot-Savart law is

dB =
µ0

4π

I ′dr′ × R̂

R2

The straight portions do not contribute to magnetic field at the origin because, along both of these
segments, dr′ and R are parallel, and therefore, their cross product is zero.
Let’s first evaluate the magnetic field due to the inner semicircle. The relative displacement vector,
R = r−r′, has magnitude R = a and points from the source point, along the integration path, back
to the observation point at r = 0. The infinitesimal displacement along the path, dr′ = a dϕ ϕ̂, is
perpendicular to R̂. Their cross-product is in the ẑ direction. Combining these,

dB =
µ0

4π

I dϕ

a
ẑ



In lecture (W01 and RP1), we calculated Biot-Savart integrands using a more formal step-by-step
procedure, identifying all vectors and carefully evaluating all magnitudes and cross products. Here,
in this relatively simple case, we have more relied on intuition and geometric reasoning, which comes
with practice. You are welcome to use either method.
Then, the magnetic field due to the inner semicircle is

Binner =
µ0

4π

I

a
ẑ

∫ π

0

dϕ =
µ0I

4a
ẑ

Continuing clockwise, the magnetic field due to the outer semicircle is taken in the reverse direction,
from ϕ = π to ϕ = 0, so

Bouter = −µ0I

4b
ẑ

Combining the two fields,

B =
µ0I

4

(
1

a
− 1

b

)
ẑ =

µ0I

4

(
b− a

ab

)
ẑ

6) (20 points) A cutaway view of an ideal toroidal coil, whose axis-of-symmetry coincides with the
z axis, is shown below. It has rectangular cross-section, inner radius a, outer radius b, height c,
and a total of N turns. In addition to the toroidal coil, there is a long straight wire that coincides
with the z axis. The directions of positive currents I1 and I2 in these conductors are indicated with
arrows
a) What is the mutual inductance M of the toroidal coil and the long straight wire?
b) If we send a pulse of current through the toroidal coil, I1(t) = I0 exp[−t2/(2τ 2)], then, assuming
that the long straight wire has total resistance R2, find the current I2(t) induced in the straight
wire.
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Solution.
a) Assume a current I2 flows in the straight wire. Its magnetic field is

B =
µ0I2
2πr

ϕ̂,

and its flux through the toroidal coil is

Φ2→1 = N

∫
S

B · da = −µ0NI2
2π

c

∫ b

a

dr

r
= −µ0Nc ln(b/a)

2π
I2 = M12I2



By reciprocity, M = M12 = M21. Therefore, we identify

M = −µ0Nc ln(b/a)

2π

Note that the negative sign originates with the given loop orientations. In this case, the azimuthal
magnetic field due to current I2 is pointed in the opposite direction of the toroid’s integration
surface S, obtained from the Stokes’ theorem’s right-hand rule for the toroid’s loop orientation. If
we flip one of the loop’s orientations, then M would become positive. This is in contrast to any
loop’s self-induction L, which is always positive.
As usual, we could have also calculated the mutual inductance M by instead assuming a current
I1 flowing in the toroidal coil and then calculating the resulting flux through circuit C2, which is
formed by the long straight wire and a big semicircular half-loop at infinity. In this case, the work
is the same, but, perhaps, it is a bit more conceptually sketchy.
b) The induced emf in the straight wire is

E1→2 = −dΦ1→2

dt
= −d(M21I1)

dt
= −M

dI1
dt

= I2(t)R2

Therefore,

I2(t) = −M

R2

dI1
dt

=

(
I0M

R2τ 2

)
te−t2/(2τ2) = −

(
I0µ0Nc ln(b/a)

2πR2τ 2

)
te−t2/(2τ2)

The current induced in the straight wire is shown on the left below.

-4 -3 -2 -1 0 1 2 3 4
t/τ

-1.0

-0.5

0.0

0.5

1.0

I 2
(t

)/
|I

2
(τ

)|

As the toroid’s current is increasing, for t < 0, current is induced on the straight wire in the ẑ
direction to oppose this change. After the pulse’s peak, the toroid’s current is decreasing, and
current is induced on the straight wire in the −ẑ direction. The induced current’s peak magnitude
occurs at t = ±τ .
Shown above, on the right, is a type of particle accelerator called an induction linac, first built at
Lawrence Livermore National Laboratory. Synchronized current pulses are sent through a sequence
of toroidal coils, which, in turn, induce an intense electric field along the axis, used to accelerate
charged particles.

7) (20 points) Consider a current source I0(t) = I0 cosωt driving the circuit below, where the positive
sense of current is indicated with arrows. Find the real-valued amplitude IL and phase ϕL such
that the current through the inductor is written

IL(t) = IL cos(ωt− ϕL).
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Solution. Represent the current source with phasor

Ĩ0 = I0e
iωt.

The circuit’s total impedance is found by adding the inductor’s and resistor’s impedances in parallel,

1

Z0

=
1

ZL

+
1

ZR

The source’s current and voltage are related through Ohm’s law,

Ẽ0 = Ĩ0Z0.

Then, the current through the inductor is also found from Ohm’s law,

ĨL =
Ẽ0
ZL

=
Z0

ZL

Ĩ0 =
Ĩ0

1 + (ZL/ZR)
=

I0e
iωt

1 + iωτL

To express ĨL in polar form, we first express the complex denominator in polar form. Using the
diagram,

Re

Im

ωτL

1

ϕL

So,
1 + iωτL =

√
1 + (ωτL)2 e

iϕL ,

where
ϕL = arctan(ωτL) .

Now, we have ĨL in polar form,

ĨL =
I0√

1 + (ωτL)2
ei(ωt−ϕL),

and IL(t) is determined by taking the real component

IL(t) = Re ĨL = IL cos(ωt− ϕL)

where

IL =
I0√

1 + (ωτL)2
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Shown above is the circuit’s frequency response. At very low frequencies, ωτL ≪ 1, the inductor
acts as a dead short, and the current through the inductor is the same as the source’s current. At
higher frequencies, it begins to get harder to drive current through the inductor. We say that the
inductor’s current rolls off at frequency ω = 1/τL.


