NAME	
ID	

- Wait until instructed to begin.
- This exam is closed-book, with no external notes, no external scratch paper, and no electronic devices.
- Use the back of this coversheet for scratch work. If needed, extra scratch paper is available.
- This exam will be curved aggressively so that there will be roughly 30% As, 30% Bs, and 30% Cs. Grades will *only* be curved upward.
- The TAs and I will provide any requested mathematical identity.
- Paperclip your pages together, in order, including this coversheet on top.

Maxwell's Equations ———		Induction	Induction ———		
$\oint_{S} \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\epsilon_{0}}$	Gauss's law	$\mathcal{E}_{ab} = \int_a^b \mathbf{f} \cdot d\mathbf{l}$	EMF		
$\oint_C \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi_{\rm enc}}{dt}$	Faraday's law	${\cal E}=-{d\Phi\over dt}$	Faraday's flux rule		
$\oint_S \mathbf{B} \cdot d\mathbf{a} = 0$	Gauss's law for ${\bf B}$	$\Phi_{k \to j} = M_{jk} I_k$ $M_{jk} = M_{kj}$	Mutual inductance Reciprocity		
$\oint_C \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{enc}}$	Ampère's law	$\Phi = LI$ $Q = VC$	Self inductance Capacitance		
Magnetostatics		$U_B = LI^2/2$	Inductor energy		
$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$ $d\mathbf{F} = Id\mathbf{l} \times \mathbf{B}$	Force on charge Force on current	$U_E = Q^2/(2C)$ $u_B = B^2/(2\mu_0)$	Capacitor energy Magnetic energy density		
$d\mathbf{B} = rac{\mu_0}{4\pi} rac{I' d\mathbf{r'} imes \hat{\mathbf{R}}}{R^2}$	Biot-Savart law	AC circuits —			
$oldsymbol{\mu} = I \mathbf{A}$	Magnetic moment	$Z_R = R$	Resistor		
$oldsymbol{ au}=oldsymbol{\mu} imes {f B}$	Torque on μ	$Z_L = i\omega L$	Inductor		
$U = -\boldsymbol{\mu} \cdot \mathbf{B}$	Energy of μ	$Z_C = -i/(\omega)$ $\widetilde{\mathcal{E}} = \mathcal{E}_0 e^{i\omega t}$, -		
RLC transients		$\widetilde{V} = \widetilde{I}Z$	AC Ohm's law		
$egin{array}{l} au_C = RC \ au_L = L/R \end{array}$	RC time constant RL time constant	$\langle A(t)B(t) \rangle = (1/2)$ I $I_{\rm rms} = \sqrt{\langle I^2(t) \rangle}$	$\operatorname{Re}(\widetilde{A}\widetilde{B}^*)$ Time-average		
$\omega_0 = 1/\sqrt{LC}$ $\omega = \omega_0 \sqrt{1 - 1/(2\omega_0 \tau_L)^2}$	Resonant frequency Damped frequency	$I_{\rm rms} = \sqrt{\langle I^2 \rangle}$ ${ m Re}(1/z) = { m Re}(z)$			
$\omega = \omega_0 \sqrt{1 - 1/(2\omega_0 \tau_L)^2}$ $q(t) = Ae^{-t/(2\tau_L)} \cos(\omega t + \phi)$					

1) (10 points) A charge q is moving with velocity $\mathbf{v} = v_0 \cos \alpha \, \hat{\mathbf{x}} + v_0 \sin \alpha \, \hat{\mathbf{z}}$ in uniform magnetic field $\mathbf{B} = B_0 \hat{\mathbf{x}}$. If we want the particle to maintain the same velocity, what electric field should we introduce?

2) (10 points) A square loop of side length a and resistance R is centered on the origin and is rotating counterclockwise in the xy plane with angular velocity ω , as shown. If there is a magnetic field $\mathbf{B} = B_0 \cos \omega t \,\hat{\mathbf{z}}$, find the magnitude and direction of the loop's induced current.

3) (10 points) Consider *two* infinite sheets of tightly packed wires. In the lower sheet, located in the plane y = 0, each wire is parallel to the z axis and carries current I in the positive z direction. In the upper sheet, located in the plane y = a, each wire is also parallel to z axis but instead carries current 2I in the *negative* z direction. Along the x direction, each sheet separately carries n wires per unit length. Find the magnetic field **B** everywhere.

4) (15 points) In the circuit below, switch S is closed shut for a very long time, so that the currents are steady. Then, at t = 0, the switch is abruptly opened. Find, by any method, the subsequent current $I_L(t)$ through the inductor, and indicate whether the current is flowing clockwise or counterclockwise.

5) (15 points) A current I flows clockwise in the loop shown below. Using the Biot-Savart law, write a derivation for the magnetic field **B** at the origin.

6) (20 points) A cutaway view of an ideal toroidal coil, whose axis-of-symmetry coincides with the z axis, is shown below. It has rectangular cross-section, inner radius a, outer radius b, height c, and a total of N turns. In addition to the toroidal coil, there is a long straight wire that coincides with the z axis. The directions of *positive* currents I_1 and I_2 in these conductors are indicated with arrows

a) What is the mutual inductance M of the toroidal coil and the long straight wire?¹

b) If we send a pulse of current through the toroidal coil, $I_1(t) = I_0 \exp[-t^2/(2\tau^2)]$, then, assuming that the long straight wire has total resistance R_2 , find the current $I_2(t)$ induced in the straight wire.

¹Remember that M can be either negative or positive!

7) (20 points) Consider a current source $I_0(t) = I_0 \cos \omega t$ driving the circuit below, where the positive sense of current is indicated with arrows. Find the real-valued amplitude I_L and phase ϕ_L such that the current through the inductor is written

$$I_L(t) = I_L \cos(\omega t - \phi_L).$$

