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Solutions

1) (8 points) Consider a thick cylindrical wire of radius a whose axis coincides with the z axis.
Uniformly over its cross section, it carries a current I0 in the positive z direction, generating an
azimuthal magnetic field B. In the xy plane, path C is a square inscribed in the wire’s cross
section, oriented as shown. Find the line integral of the magnetic field around path C.
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proportional to the ratio of the square’s area, 2a2, to the circle’s area, πa2. Then,
Ampère’s law gives ∮
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2) (8 points) A wire in the xy plane carries current I0 from its initial point at (−a, 0) to its final point
at (a, 0). The wire is bent into a parabola satisfying y = y0 [1− (x/a)2], as shown below. Find the
net force on the wire if it is immersed in a magnetic field B = B0ẑ.
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Solution. No need to go sweaty mode here. Like we saw in PS1 Q3, the uniform magnetic field
comes out of the integral, which then trivially becomes the path’s overall displacement.

Fnet =

∫
C

I dr×B = I0

(∫
C

dr

)
×B = I0(2ax̂)× (B0ẑ) = −2I0B0aŷ



3) (8 points) Alice and Bob rocket toward each other at a very high speed. From Alice’s frame, Bob
approaches at a speed equal to (4/5)c. Likewise, from Bob’s frame, Alice approaches at a speed
equal to (4/5)c. Meanwhile, you are stationed between Alice and Bob, where you note that Alice
and Bob are both approaching you at the same speed. In terms of c, what is that speed?

Solution. This is essentially the same as MP8 Q9 (Y&F 37.21), whose solution was posted on
Campuswire. In this problem, we take

S = Alice, S ′ = You, and S ′′ = Bob.

β1 β2S S′ S′′

β

The given information says β = −4/5 and β1 = β2 < 0. Then, the velocity addition rule gives

β =
β1 + β2
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=
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1

=⇒ ββ2
1 − 2β1 + β = 0

Using the quadratic formula,
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where we have excluded the unphysical solution β1 = −2. In your frame, the speed of either Alice

or Bob is then v1 = |β1|c = c/2

4) (10 points) A double slit is uniformly and coherently illuminated by light of wavelength λ0. The
slits are spaced a distance d = 15λ0 apart and the width of each slit is a = 3λ0. How many
interference maxima lie within the central diffraction envelope?

Solution. This is essentially the same as an example presented during W09 lecture. The ob-
served intensity pattern is

I = I0 cos
2(ϕ/2) sinc2(β/2).

The interference peaks are governed by the phase difference between the two slits,

ϕ =

(
2π

λ0

)
d sin θ,

whereas the diffraction envelope is governed by the phase difference between opposite ends of each
slit,

β =

(
2π

λ0

)
a sin θ.
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Maxima of cos2 x occur at x = 0,±π,±2π, . . . Therefore, interference peaks are located at

mπ =
ϕ

2
=⇒ sin θm =

mλ0

d
=

m

15
, where m = 0,±1,±2, . . .

The first zero of sincx occurs at x = ±π. Therefore, central diffraction envelope extends from −θa
to θa, where

π =
β

2
=⇒ sin θa =

λ0

a
=

1

3
The interference peaks at θ±5 coincide with the diffraction minima, so we don’t include them in
our sum. The interference peaks within the central diffraction envelope then occur at

sin θm =

{
− 4

15
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15
,− 2

15
, . . . ,
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}
,

for a total of 4 + 1 + 4 = 9 .

5) (10 points) Consider a volume V of a metal with electrical conductivity σ. We draw the metal out
into a uniformly thin wire formed into a circular loop of radius a in the xy plane, as shown. If the
wire is then immersed in a time-varying magnetic field B(t) = ẑB0t/τ , find the magnitude and the
direction of the induced current flowing in the circular loop.
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Solution. This is an easier variation on PS2 Q2. Because the wire is thin, to a good approximation,
then V = A 2πa, where A is the wire’s cross-section area. The Ohmic resistance of the circular
loop is is then

R =
L

σA
=

2πa

σA
=

4π2a2

σV
.

Taking the orientation of the loop to be counterclockwise, the magnetic flux through the loop is

Φ =
B0t

τ
πa2



Then, Faraday’s flux rule gives the net emf around the loop,

E = −dΦ

dt
= −B0

τ
πa2 = IR

Because of the negative sign, the current is clockwise , opposite of our assumed orientation. We
confirm this using Lenz’s law. The induced current should generate a flux into the page, in
opposition to the steadily growing flux out of the page. Indeed, a clockwise current generates
a magnetic field into the page. The magnitude of the current is

|I| = B0πa
2

τR
=

B0σV

τ4π

It is somewhat amusing that the current is independent of the loop’s radius. A larger loop collects
more flux, with the resulting emf proportional to a2. On the other hand, a larger loop is made
with a longer, thinner wire, which both increase the overall resistance, proportional to a2. Both
effects exactly cancel.

6) (12 points) Consider two circular conducting loops in the xy plane, centered on the origin. The
inner loop has radius a, and the outer loop has radius b. You may assume that a ≪ b. A time
varying current Ia(t) = I0 cosωt flows through the inner loop, where we take the positive sense of
current to be in the counterclockwise direction. If R is the resistance of the outer loop, then find
the magnitude and direction of current Ib(t) induced in the outer loop.
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Solution. This is conceptually the same as PS2 Q4. Let’s first choose the orientation of the outer
loop to also be counterclockwise. Then, given an inner loop current Ia, the resulting flux through
the outer loop is

Φa→b = MbaIa.

Faraday’s flux rule yields the current through the outer loop,

Ea→b = −dΦa→b

dt
= −Mba

dIa
dt

= IbR =⇒ Ib = −Mba

R

dIa
dt

.

Now, we only need to calculate Mba. Given an inner loop current Ia, however, directly finding the
resulting flux through the outer loop seems extraordinarily difficult and may even not be properly
defined. Inside the inner loop, the magnetic field comes out of the page. Outside the inner loop,
the magnetic field goes into the page. The first difficulty we encounter is that the magnetic field
diverges at the inner loop. We could perhaps overcome this difficulty by calculating the flux by
initially assuming that the inner wire has a finite thickness, and then taking the limit for a thin
inner loop wire. The second difficulty is that we still need to find the field strength as a function
of x in a region where we won’t be able to take advantage of a ≪ b.



Fortunately, we may instead use the reciprocity property of mutual inductance,

Mba = Mab.

As we shall see shortly, finding Mab is relatively painless. It is defined by relating an assumed
current Ib through the outer loop to the resulting flux through the inner loop,

Φb→a = MabIb

We assume that the inner loop is small enough that, to a good approximation, the resulting
magnetic field is constant over its area. By the Biot-Savart law, the direction of the magnetic field
is in the ẑ direction, and its magnitude is found by integrating around the outer loop,

dB =
µ0

4π

Ibdr
′

b2
=⇒ B =

µ0Ib
2b

Then,

Φb→a =

(
µ0Ib
2b

)
πa2 =⇒ Mab =

µ0πa
2

2b

Finally,

Ib = −Mab

R

dIa
dt

=
µ0πa

2I0ω

2bR
sinωt ,

where the positive sense of current is in the counterclockwise direction.

7) (12 points) Consider four thin slits that are uniformly spaced a distance d apart. The slits are co-
herently and uniformly illuminated by light of wavelength λ0. We then cover each slit with a thin
dielectric plate of refractive index n. The first plate’s thickness is b, the second plate’s thickness is
2b, etc. The resulting intensity is observed at angle θ, as shown below.
a) At what angle is the beam’s central maximum θ0?
b) What is the angular separation ∆θ0 between the central maximum and either one of its adjacent
minima?

d
λ0

θ

3b

4b

Solution. This is an extension of PS6 Q3 from N = 3 to N = 4, though, it is slightly complicated
by the additional beam-to-beam OPD dependent on the angle of observation. On the other hand,
there is little computation here because we can simply quote the W09 general result for N beam
interference.

Conceptually, we have N = 4 coherent beams of equal intensity and a uniform phase increment ϕ.
In W09, we found the resulting intensity, as a function of ϕ, by summing the phasors, written as
a finite geometric series. As given on the cheat sheet, the intensity is

I = I0
sin2(Nϕ/2)

sin2(ϕ/2)
.



In addition to the usual phase increment due to neighboring slits spaced a distance d apart, the
phase increment now also includes a term accounting for the OPD resulting from the dielectric
plates,

ϕ =

(
2π

λ0

)
[d sin θ + (n− 1)b]

The quantity in the brackets is the optical path difference between neighboring slits, OPD =
OPLk+1 − OPLk. According to the diagram above, the optical path length due to both terms in-
creases as we move from the first slit, at the top, to the fourth slit, at the bottom. As we progress
downwards, for each subsequent slit, we “convert” a thickness b of vacuum, with dielectric constant
1, to a thickness b of dielectric plate, with dielectric constant n. This yields the mysterious factor
n− 1. It is a common mistake to use n instead of n− 1 here. A good check is to make sure that
your result reduces to the usual result if the dielectric plates were made of vacuum, n = 1.

As shown below, the presence of the plates shifts the overall interference pattern, functionally
equivalent to a phased-array antenna. You explored the continuum version of this system in PS7
Q1.

-75 -50 -25 0 25 50 75
θ (deg)

0.00

0.25

0.50

0.75

1.00

I(
θ)
/(
N

2
I 0

)

m= − 2 m= − 1 m= 0 m= 1 m= 2

N= 4, d/λ0 = 2.5, b/λ0 = 0.5, n= 1.5

a) The central maximum or zeroth order, m = 0, occurs when ϕ = 0,

d sin θ0 + (n− 1)b = 0 =⇒ θ0 = − arcsin

[
(n− 1)b

d

]
In the example case shown in the above diagram,

θ0 = − arcsin

[
(1.5− 1)0.5

2.5

]
≈ −5.74◦

b) Generally, apart from the constructive peaks at integer multiples of ϕ = 2π, the intensity I has
destructive minima at multiples of ϕ = 2π/N . In our case, N = 4, the minima adjacent to the
constructive peaks corresponds to ϕ = 90◦, where the four phasors form a square, shown below



N= 4,∆φ= 90 ◦
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Alternatively, the first zero is easily seen from the intensity’s functional form,

sin(Nϕ/2) = 0 =⇒ Nϕ±/2 = ±π =⇒ ϕ± = ±2π/N

Then, the adjacent minima are located at θ±, determined by

ϕ± = ±2π

N
=

(
2π

λ0

)
[d sin θ± + (n− 1)b] =⇒ θ± = arcsin

[
±λ0

4d
− (n− 1)b

d

]
The upper and lower angular separation, without approximations, are then

∆θ± = |θ± − θ0| .

You were only asked to find one of these, so it is fine if you only wrote down one of them. I will
now develop an approximation for ∆θ ≈ ∆θ±. You weren’t asked to develop an approximation, so
the remaining solution is just for fun.
Let

x0 = −(n− 1)b

d
and ∆x =

λ0

4d

so that
θ± = arcsin(x0 ±∆x) and θ0 = arcsin(x0),

Then,
∆θ± = |θ± − θ0| = | arcsin(x0 ±∆x)− arcsin(x0)|

Using1

arcsin(x+ y) = arcsin(x) +
y√

1− x2
+O(y2),

∆θ± ≈ ∆θ ≡ (λ0/4)√
d2 − (n− 1)2b2

which is a good approximation for λ0/(4d) ≪ 1. In the example case shown earlier, λ0/(4d) = 0.1,
and

∆θ =
1/4√

2.52 − (1.5− 1)20.52
≈ 5.8◦

1Series[ArcSin[x + y], {y, 0, 3}]



8) (16 points) Consider a voltage source E0(t) = E0 cosωt driving the circuit below, where the positive
sense of current is indicated with an arrow. Assuming the inductor’s top terminal is its positive
reference, find the real-valued amplitude VL and phase ϕL such that the voltage across the inductor
is written

VL(t) = VL cos(ωt+ ϕL).

E0(t)

R

R L

Solution. Represent the voltage source with phasor

Ẽ0 = E0eiωt.

The circuit’s total impedance Z0 is

Z0 = R + Z1 where
1

Z1

=
1

R
+

1

ZL

and ZL = iωL.

The source’s current and voltage are related through Ohm’s law,

Ẽ0 = Ĩ0Z0.

Then, the voltage across the inductor is also found from Ohm’s law,

ṼL = Ĩ0Z1 =
Z1

Z0

Ẽ0 =
Ẽ0

1 + (R/Z1)
=

(E0/2)eiωt

1− i/(2ωτL)

To express ṼL in polar form, we first express the complex denominator in polar form. Using the
diagram,

Re
Im

1/(2ωτL)

1
ϕL

So,

1− i

2ωτL
=

√
1 + 1/(2ωτL)2 e

−iϕL ,

where

ϕL = arctan

(
1

2ωτL

)
.

Now, we have ṼL in polar form,

ṼL =
E0/2√

1 + 1/(2ωτL)2
ei(ωt+ϕL),

and VL(t) is determined by taking the real component

VL(t) = Re ṼL = VL cos(ωt+ ϕL)

where

VL =
E0/2√

1 + 1/(2ωτL)2
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Shown above is the circuit’s frequency response. At very low frequencies, ωτL ≪ 1, the inductor acts
as a dead short, and the voltage across the inductor goes to zero. At higher frequencies, it begins
to get harder to drive current through the inductor. Then, the circuit becomes approximately two
resistors R in series. As expected, the voltage across the inductor is then equal to E0/2 and is
in-phase with the voltage source.

9) (16 points) An optical system consists of

• A converging lens of focal length f1 = f > 0, located at z = 0.

• A diverging lens of focal length f2 = −2f < 0, located at z = 3f .

• An upright arrow of height y1, located in the object plane at z1 = −f/2.

a) Calculate the location z′2 and total magnification m of the resulting image.
b) Sketch the system, including three principal rays for each lens. Identify all objects and images
as real or virtual using our usual notation (e.g., RO1 for the real object of subsystem 1). Remember
that something can be both an image and an object.
c) A ray (y1, θ1) passes through the optical system, beginning in the object plane. Find the ray
(y2, θ2) in the image plane.

Solution.
a) The final image location is z′2 = 5f/3 and the total magnification is m = 2/3 .

Subsystem Focal length Object location Image location Magnification

Converging lens f1 = f s1 = f/2 s′1 = −f m1 = 2

Diverging lens f2 = −2f s2 = 4f s′2 = −4f/3 m2 = 1/3

b) The system is sketched below. The three principal rays of both lenses are indicated with arrows.
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c) The system’s net optical ray transfer matrix that traces rays from the mirror’s object plane to
the lens’s image plane is

M = M2 ·M1

=

(
m2 0

−1/f2 1/m2

)(
m1 0

−1/f1 1/m1

)
=

(
1/3 0

1/(2f) 3

)(
2 0

−1/f 1/2

)
=

(
2/3 0
−2/f 3/2

)
Then, (

y2
θ2

)
= M ·

(
y1
θ1

)
=

(
2/3 0
−2/f 3/2

)(
y1
θ1

)
=

(
2y1/3

3θ1/2− 2y1/f

)
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Shown above is a fan of rays traced through the system. The rays were traced using ray transfer
matrices. Unlike the hand-tracing method, where we only trace principal rays through a single
element, these rays have arbitrary angles and can be traced through the entire system.


