| NAME |  |
|------|--|
| ID   |  |

- Wait until instructed to begin.
- This exam is closed-book, with no external notes, no external scratch paper, and no electronic devices.
- Use this coversheet for scratch work. If needed, extra scratch paper is available.
- This exam will be curved aggressively so that there will be roughly 30% As, 30% Bs, and 30% Cs. Grades will *only* be curved upward.
- The TAs and I will provide any requested mathematical identity.
- Paperclip your pages together, in order, including this coversheet on top.

$$\begin{array}{l} \label{eq:second} \mbox{Maxwell's Equations} \\ \hline f_S \mbox{E} \cdot d \mbox{a} = \frac{Q_{enc}}{c_0} & \mbox{Gauss's law} \\ \hline f_S \mbox{E} \cdot d \mbox{a} = 0 & \mbox{Gauss's law for } \mbox{B} \\ \hline f_S \mbox{B} \cdot d \mbox{a} = 0 & \mbox{Gauss's law for } \mbox{B} \\ \hline f_S \mbox{B} \cdot d \mbox{a} = 0 & \mbox{Gauss's law for } \mbox{B} \\ \hline f_S \mbox{B} \cdot d \mbox{a} = 0 & \mbox{Gauss's law for } \mbox{B} \\ \hline f_S \mbox{B} \cdot d \mbox{a} = 0 & \mbox{Gauss's law for } \mbox{B} \\ \hline \mbox{Magnetostatics} & \mbox{F} = q(\mbox{E} + \mbox{v} \times \mbox{B}) & \mbox{Force on charge} \\ d \mbox{F} = I d \mbox{r} \times \mbox{B} & \mbox{Force on current} \\ d \mbox{B} = \frac{\mu_0}{4\pi} \frac{I' d \mbox{r}' \times \mbox{R}}{R^2} & \mbox{Biot-Savart law} \\ \mu = I \mbox{A} & \mbox{Magnetic moment} \\ \hline \mbox{T} = \mu \times \mbox{B} & \mbox{Torque on } \mu \\ \mbox{U} = -\mu \cdot \mbox{B} & \mbox{Energy of } \mu \\ \hline \mbox{RLC transients} & \\ \hline \mbox{T} C = RC & \mbox{RC time constant} \\ \hline \mbox{T} \mu = L/R & \mbox{RL time constant} \\ \hline \mbox{T} \mu = 0 \sqrt{1 - 1/(2\omega_0\tau_L)^2} & \mbox{Damped frequency} \\ \mbox{$\omega = 0, \sqrt{1 - 1/(2\omega_0\tau_L)^2}$} & \mbox{Damped frequency} \\ \hline \mbox{$\Theta entric optics} & \\ \hline \mbox{Geometric optics} & \\ \hline \mbox{Geometric optics} & \\ \hline \mbox{Geometric optics} & \\ \mbox{$\theta_i = \theta_r$} & \mbox{Specular reflection} \\ \mbox{$n_1 \sin n_1 = n_2 \sin \theta_2$} & \mbox{Specular reflection} \\ \mbox{$n_1 \sin n_1 \sin n_2 \sin \theta_2$} & \mbox{Specular magnification} \\ \mbox{$m_1 + \frac{1}{s'} = \frac{1}{f}$} & \mbox{Thin lens equation} \\ \mbox{$m_1 + \frac{n_2}{s'} = \frac{n_2 - n_1}{r}$} & \mbox{Refractive surface} \\ \mbox{$\frac{1}{f} = (n - 1) \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$} & \mbox{Lensmaker's equation} \\ \mbox{$\left(\frac{1}{0} \ 0, n_1/n_2\right)$} & \mbox{Dielectric interface} \\ \mbox{$\left(\frac{1}{0} \ -1/f \ 1/m\right)$} & \mbox{Thin lens system} \\ \end{tabular}$$

| nduction —                                                                                                                                                                                |                                  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|
| $\mathcal{E}_{ab} = \int^b \mathbf{f} \cdot d\mathbf{l}$                                                                                                                                  | EMF                              |  |  |
| $J_a$                                                                                                                                                                                     |                                  |  |  |
| $\mathcal{E} = -rac{d\Phi}{dt}$                                                                                                                                                          | Faraday's flux rule              |  |  |
| $\Phi_{k \to j} = M_{jk} I_k$                                                                                                                                                             | Mutual inductance                |  |  |
| $M_{jk} = M_{kj}$                                                                                                                                                                         | Reciprocity                      |  |  |
| $\Phi = LI$                                                                                                                                                                               | Self inductance                  |  |  |
| Q = VC                                                                                                                                                                                    | Capacitance                      |  |  |
| $U_B = LI^2/2$                                                                                                                                                                            | Inductor energy                  |  |  |
| $U_E = Q^2/(2C)$                                                                                                                                                                          | Capacitor energy                 |  |  |
| AC circuits —                                                                                                                                                                             |                                  |  |  |
| $Z_{\rm p} - R$                                                                                                                                                                           | Resistor                         |  |  |
| $Z_R = R$<br>$Z_L = i \omega L$                                                                                                                                                           | Inductor                         |  |  |
| $Z_L = i\omega L$ $Z_G = -i/(\omega C)$                                                                                                                                                   | Capacitor                        |  |  |
| $ZC = -i/(\omega C)$<br>$\widetilde{C} = C - i\omega t$                                                                                                                                   | Disease                          |  |  |
| $\mathcal{E} = \mathcal{E}_0 e^{-i\omega}$                                                                                                                                                | Phasor                           |  |  |
| V = IZ                                                                                                                                                                                    | AC Ohm's law                     |  |  |
| $\langle A(t)B(t)\rangle = (1/2) \operatorname{Re}$                                                                                                                                       | $(AB^*)$ Time-average            |  |  |
| $I_{\rm rms} = \sqrt{\langle I^2(t) \rangle}$                                                                                                                                             | $\overline{\rangle}$ RMS current |  |  |
| $\operatorname{Re}(1/z) = \operatorname{Re}(z)/ z $                                                                                                                                       | $  ^2$ Useful identity           |  |  |
| Electromagnetic waves -                                                                                                                                                                   |                                  |  |  |
| $L_{I} = \epsilon_{0} \frac{d\Phi_{E}}{d\Phi_{E}}$                                                                                                                                        | Displacement current             |  |  |
| dt                                                                                                                                                                                        |                                  |  |  |
| $c = 1/\sqrt{\mu_0 \epsilon_0}$                                                                                                                                                           | Speed of light                   |  |  |
| $\mathbf{S} = (1/\mu_0)\mathbf{E} \times \mathbf{B}$                                                                                                                                      | Poynting vector                  |  |  |
| $u_E = (1/2)\epsilon_0 E^2$                                                                                                                                                               | Electric energy density          |  |  |
| $u_B = B^2/(2\mu_0)$                                                                                                                                                                      | Magnetic energy density          |  |  |
| $v = \frac{1}{\sqrt{\mu\epsilon}} = \frac{c}{n}$                                                                                                                                          | Speed of light in matter         |  |  |
| Sinusoidal EM waves                                                                                                                                                                       |                                  |  |  |
| $\mathbf{E}(\mathbf{r}, t) = \mathbf{E}_0 \cos(\mathbf{k} \cdot \mathbf{r} - \omega t)$                                                                                                   |                                  |  |  |
| $\mathbf{B}(\mathbf{r}, t) = \mathbf{B}_0 \cos(\mathbf{k} \cdot \mathbf{r} - \omega t)$ $\mathbf{B}(\mathbf{r}, t) = \mathbf{B}_0 \cos(\mathbf{k} \cdot \mathbf{r} - \omega t)$           |                                  |  |  |
| $\mathbf{F}_{i} = a\mathbf{R}_{i} \times \hat{\mathbf{k}}$                                                                                                                                |                                  |  |  |
| $\mathbf{L}_0 - c\mathbf{D}_0 \wedge \mathbf{K}$<br>$\omega = 2\pi f,  k = 2\pi/\lambda,  \omega = ck  \lambda f = c$                                                                     |                                  |  |  |
| $(u) - (1/2)\epsilon_0 E_2^2  I = /S - \sqrt{\epsilon_0/u_0} E^2/2$                                                                                                                       |                                  |  |  |
| $\langle u_{I} - (1/2)\varepsilon_{0}\omega_{0}, I = \langle S \rangle - \sqrt{\varepsilon_{0}}/\mu_{0}\omega_{0}/2$<br>$\langle n^{abs} \rangle = I/a - \langle n^{refl} \rangle = 2I/a$ |                                  |  |  |
| $\langle p_{\rm rad} \rangle = 1/c,  \langle p_{\rm rad} \rangle = 21/c$                                                                                                                  |                                  |  |  |
|                                                                                                                                                                                           |                                  |  |  |
|                                                                                                                                                                                           |                                  |  |  |
|                                                                                                                                                                                           |                                  |  |  |

| – Interference –                                             |                         |  |  |
|--------------------------------------------------------------|-------------------------|--|--|
|                                                              |                         |  |  |
| $\text{OPL} \equiv \int_C n(s)  ds$                          | Optical path length     |  |  |
| $\lambda_0 = n\lambda$                                       | Vacuum wavelength       |  |  |
| $I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \phi$                  | Two-beam intensity      |  |  |
| $I = I_0 \cos^2(\phi/2)$                                     | Two-beam intensity      |  |  |
| $\phi(\mathbf{r}) = (2\pi/\lambda_0)\text{OPD} + \Delta\phi$ | Two-beam phase          |  |  |
| $nd\sin\theta = m\lambda_0$                                  | Two-slit constructive   |  |  |
| $nd\sin\theta = (m+1/2)\lambda_0$                            | Two-slit destructive    |  |  |
|                                                              |                         |  |  |
| - Diffraction                                                |                         |  |  |
| $I = I_0 \frac{\sin^2(N\phi/2)}{\sin^2(\phi/2)}$             | N-beam interference     |  |  |
| $\phi = (2\pi/\lambda_0)d\sin\theta$                         | N-slit phase increment  |  |  |
| $\overline{I = I_0 \operatorname{sinc}^2(\beta/2)}$          | Finite slit diffraction |  |  |
| $\beta = (2\pi/\lambda_0)a\sin\theta$                        | Finite slit OPD         |  |  |
| $I = I_0 \frac{\sin^2(N\phi/2)}{\sin^2(\beta/2)}$            | N finite slits          |  |  |
| $\sin^2(\phi/2)$ since $(\beta/2)$                           | TV IIIIte Sites         |  |  |

- Math  

$$(1+x)^{\alpha} \approx 1 + \alpha x \quad (|x| \ll 1)$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin c x = (\sin x)/x$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

## – Relativity –

| $\beta = v/c$                                                                                                                                                  |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| $\gamma = 1/\sqrt{1-\beta^2}$                                                                                                                                  |                    |
| $\begin{pmatrix} ct' \\ x' \end{pmatrix} = \begin{pmatrix} \gamma & -\beta\gamma \\ -\beta\gamma & \gamma \end{pmatrix} \begin{pmatrix} ct \\ x \end{pmatrix}$ |                    |
| $\begin{pmatrix} ct \\ x \end{pmatrix} = \begin{pmatrix} \gamma & \beta\gamma \\ \beta\gamma & \gamma \end{pmatrix} \begin{pmatrix} ct' \\ x' \end{pmatrix}$   |                    |
| $\Delta t_0$                                                                                                                                                   | Proper time        |
| $\Delta x_0$                                                                                                                                                   | Proper length      |
| $\Delta t = \gamma \Delta t_0$                                                                                                                                 | Time dilation      |
| $\Delta x = (\Delta x_0) / \gamma$                                                                                                                             | Length contraction |
| $\beta = \frac{\beta_1 + \beta_2}{1 + \beta_1 \beta_2}$                                                                                                        | Velocity addition  |
| $E = \gamma mc^2$                                                                                                                                              | Energy             |
| $\mathbf{p} = \gamma m \mathbf{v}$                                                                                                                             | Momentum           |
| $\mathbf{F} = d\mathbf{p}/dt$                                                                                                                                  | Force              |
| $E^2 = (mc^2)^2 + (pc)^2$                                                                                                                                      |                    |

1) (8 points) Consider a thick cylindrical wire of radius a whose axis coincides with the z axis. Uniformly over its cross section, it carries a current  $I_0$  in the positive z direction, generating an azimuthal magnetic field **B**. In the xy plane, path C is a square inscribed in the wire's cross section, oriented as shown. Find the line integral of the magnetic field around path C.



2) (8 points) A wire in the xy plane carries current  $I_0$  from its initial point at (-a, 0) to its final point at (a, 0). The wire is bent into a parabola satisfying  $y = y_0 [1 - (x/a)^2]$ , as shown below. Find the net force on the wire if it is immersed in a magnetic field  $\mathbf{B} = B_0 \hat{\mathbf{z}}$ .



3) (8 points) Alice and Bob rocket toward each other at a very high speed. From Alice's frame, Bob approaches at a speed equal to (4/5)c. Likewise, from Bob's frame, Alice approaches at a speed equal to (4/5)c. Meanwhile, you are stationed between Alice and Bob, where you note that Alice and Bob are both approaching you at the *same* speed. In terms of c, what is that speed?

4) (10 points) A double slit is uniformly and coherently illuminated by light of wavelength  $\lambda_0$ . The slits are spaced a distance  $d = 15\lambda_0$  apart and the width of each slit is  $a = 3\lambda_0$ . How many interference maxima lie within the central diffraction envelope?

5) (10 points) Consider a volume V of a metal with electrical conductivity  $\sigma$ . We draw the metal out into a uniformly thin wire formed into a circular loop of radius a in the xy plane, as shown. If the wire is then immersed in a time-varying magnetic field  $\mathbf{B}(t) = \mathbf{\hat{z}}B_0t/\tau$ , find the magnitude and the direction of the induced current flowing in the circular loop.<sup>1</sup>



<sup>&</sup>lt;sup>1</sup>Recall that a wire of length L, cross-section area A, and electrical conductivity  $\sigma$  has resistance  $R = L/(\sigma A)$ .

6) (12 points) Consider two circular conducting loops in the xy plane, centered on the origin. The inner loop has radius a, and the outer loop has radius b. You may assume that  $a \ll b$ . A time varying current  $I_a(t) = I_0 \cos \omega t$  flows through the inner loop, where we take the positive sense of current to be in the counterclockwise direction. If R is the resistance of the outer loop, then find the magnitude and direction of current  $I_b(t)$  induced in the outer loop.<sup>2</sup>



<sup>&</sup>lt;sup>2</sup>Hmmm... maybe use the reciprocity of mutual inductance?

7) (12 points) Consider four thin slits that are uniformly spaced a distance d apart. The slits are coherently and uniformly illuminated by light of wavelength  $\lambda_0$ . We then cover each slit with a thin dielectric plate of refractive index n. The first plate's thickness is b, the second plate's thickness is 2b, etc. The resulting intensity is observed at angle  $\theta$ , as shown below.

a) At what angle is the beam's central maximum  $\theta_0$ ?

b) What is the angular separation  $\Delta \theta_0$  between the central maximum and either one of its adjacent minima?



8) (16 points) Consider a voltage source  $\mathcal{E}_0(t) = \mathcal{E}_0 \cos \omega t$  driving the circuit below, where the positive sense of current is indicated with an arrow. Assuming the inductor's top terminal is its positive reference, find the real-valued amplitude  $V_L$  and phase  $\phi_L$  such that the voltage across the inductor is written

$$V_L(t) = V_L \cos(\omega t + \phi_L).$$



- 9) (16 points) An optical system consists of
  - A converging lens of focal length  $f_1 = f > 0$ , located at z = 0.
  - A diverging lens of focal length  $f_2 = -2f < 0$ , located at z = 3f.
  - An upright arrow of height  $y_1$ , located in the object plane at  $z_1 = -f/2$ .

a) Calculate the location  $z'_2$  and total magnification m of the resulting image.

b) Sketch the system, including three principal rays for each lens. Identify all objects and images as real or virtual using our usual notation (e.g.,  $RO_1$  for the real object of subsystem 1). Remember that something can be both an image and an object.

c) A ray  $(y_1, \theta_1)$  passes through the optical system, beginning in the object plane. Find the ray  $(y_2, \theta_2)$  in the image plane.