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Solutions

1) (10 points) Taking the wire to lie along the z axis, the magnetic field is obtained from
Ampère’s law,

∇×B = µ0J =⇒ Bφ2πs = µ0I0 =⇒ B =
µ0I0
2πs

φ̂

Taking the orientation of the square loop to be counterclockwise as shown, the magnetic
flux through the square loop is

Φ =

∫
B · da =

µ0I0a

2π

∫ x+a

x

ds

s
=
µ0I0a

2π
ln

(
x+ a

x

)
As we pull the square loop away from the wire, the flux through the loop decreases,
inducing an emf. Faraday’s flux rule and the chain rule give

E = −dΦ

dt
= −dΦ

dx

dx

dt
=
µ0I0v

2π

a2

x(x+ a)
= IR

Assuming I0 > 0 and v > 0, we have I > 0 so that the induced current is counterclock-
wise. This agrees with Lenz’s law in that a counterclockwise current acts to increase
the flux through the square loop.

For a given steady current I, we should pull the square loop away with a velocity

v =
2π

µ0

IR

I0

x(x+ a)

a2

Note that this result is still true for a constant current flowing clockwise (I < 0). In
this case, v < 0, and we are pushing the loop towards the wire.

2) (10 points) We are asked to find the induced current I2(t) in the rectangular loop due
to a given current I1(t) flowing in the square loop. Faraday’s flux rule gives

E1→2 = −dΦ1→2

dt
= −M21

dI1
dt

= I2R2

Therefore, we just need to find the coefficient of mutual inductance M21. Let’s back
up a step and write down how the coefficients of mutual inductance are defined,

Φ1→2 = M21I1

Φ2→1 = M12I2
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To find M21, we suppose that a current I1 flows in the square loop and then calculate
the resulting flux Φ1→2 through the rectangular flux. This is easier said than done.
Not only is the square loop’s magnetic field complicated, but, as there is no exploitable
symmetry, finding the flux through the rectangular loop seems hopeless.

On the other hand, using the given assumption a� b, the other coefficient of mutual
inductance, M12, is trivial to calculate. Supposing a current I2 flows in the rectangular
loop, the flux through the square loop is

Φ2→1 = 2
µ0I2a

2π

∫ 2a

a

ds

s
=
µ0I2a

π
ln 2 = M12I2,

which is essentially the same calculation as in Problem 1, and the factor of 2 is due to
contributions from both of the long sides of the rectangular loop.

Then, using the reciprocity theorem of mutual inductance,

M21 = M12 =
µ0a ln 2

π
≡M

Finally,

I2(t) = −M
R2

dI1
dt

= −µ0a ln 2

πR2

dI1
dt

As a check, for dI1/dt > 0, the flux through the rectangular loop is increasing. There-
fore, the induced current through the rectangular loop should be in the clockwise
direction to oppose this change in flux. This is consistent with the negative sign in the
answer.

3) (10 points) To evaluate the Poynting vector everywhere, we will first need to find the
electromagnetic fields everywhere.

The electric field between the cylinders is found from Gauss’s law,

∇ · E =
ρ

ε0
=⇒ Es2πsL =

λL

ε0
=⇒ E =

λ

2πε0s
ŝ.

Elsewhere, the electric field is zero.

The magnetic field between the cylinders is found from Ampère’s law,

∇×B = µ0J =⇒ Bφ2πs = µ0I =⇒ B =
µ0I

2πs
φ̂,

where I = λv. Elsewhere, the magnetic field is zero.

Then, the Poynting vector is

S =
E×B

µ0

=


vλ2

4π2ε0s2
ẑ between the cylinders

0 elsewhere

The net rate of electromagnetic energy flowing through the xy plane is

P =

∫
z=0

(S · ẑ) dx dy =
vλ2

4π2ε0
2π

∫ b

a

ds

s
= v

λ2

2πε0
ln

(
b

a

)
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4) (10 points) The net force acting on the charges and currents within a volume V bound
by a surface S is

Fmech =

∮
S

↔

T · da−
∫
V

∂g

∂t
dV.

In this problem, everything is static, so we can drop the volume integral.

We need to explicitly specify an imaginary closed surface S that completely encloses
point charge q1, but not point charge q2. Though any such choice will, in theory,
produce the correct result, one choice that gives an easy calculation is to choose a
hemispherical ‘bowl,’ of radius R > a, centered on the origin, together with its ‘disk’
base, lying in the xy plane.

We must first argue that, for R→∞,∫
bowl

↔

T · da = 0.

It is sufficient to argue that, in the limit R → ∞, the electric field scales as 1/R2, as
the leading term in the multipole expansion is the monopole term. Then, the bowl
surface’s area scales as R2 while the Maxwell stress tensor scales as 1/R4 – giving an
overall scaling of 1/R2 for the value of the integral.

We need to calculate the Maxwell stress tensor in the xy plane. Taking r = sŝ, the
relative position vectors are

R1 = r− r1 = sŝ− aẑ
R2 = r− r2 = sŝ + aẑ

The electric field in the xy plane is then

E =
q1R1

4πε0R3
1

+
q2R2

4πε0R3
2

=
q

2πε0

sŝ

(s2 + a2)3/2

In the xy plane, Ez = 0, so that Txz = Tyz = 0, and
↔

T · ẑ = Tzzẑ, where

Tzz = ε0

[
EzEz −

1

2
E2

]
= −ε0

2
E2 = − q2

8π2ε0

s2

(s2 + a2)3

Then, we have, taking da = −dx dy ẑ = −2πs ds ẑ to be the outward surface normal at
the disk,

Fmech =

∫
disk

↔

T · da = −ẑ 2π

∫ ∞

0

Tzz s ds = ẑ
q2

4πε0

∫ ∞

0

s3 ds

(s2 + a2)3

The following definite integral was provided on the blackboard,∫ ∞

0

s3 ds

(s2 + a2)3
=

1

4a2

Then,

Fmech =
q2

4πε0(2a)2
ẑ


