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Solutions

1) Using Ampère’s law, the solenoid’s magnetic field is

B(s, t) =

{
µ0nI(t) ẑ s < a

0 s > a

The magnetic flux through a disc of radius s, lying in the xy plane, centered on the
origin, and oriented in the positive z direction, is

Φ(s, t) =

{
(πs2)µ0nI0 cosωt s < a

(πa2)µ0nI0 cosωt s ≥ a

Then, Faraday’s law gives the electric field in terms of the changing flux,

2πsEφ = −∂Φ

∂t
=⇒ E =


φ̂
s

2
(µ0nI0ω) sinωt s < a

φ̂
a2

2s
(µ0nI0ω) sinωt s ≥ a

2) The electric field is radially directed outward from the origin,

E(t) =
Q(t)

4πε0r2
r̂

Then, the displacement current through the sphere is

Id =

∮
Jd · da = ε0

∮
∂E

∂t
· da =

dQ

dt
= I(t)

3) The net force acting on the charges and currents within a volume V bound by a
surface S is

Fmech =

∮
S

↔

T · da−
∫
V

∂g

∂t
dV.

In this problem, everything is static, so we can drop the volume integral.

We need to explicitly specify an imaginary closed surface S that completely encloses
the upper shell, but not the lower shell. Though any such choice will, in theory,
produce the correct result, one choice that gives an easy calculation is to choose a
hemispherical ‘bowl,’ of radius R > a, centered on the origin, together with its ‘disk’
base, lying in the xy plane.



We must first argue that, for R→∞,∫
bowl

↔

T · da = 0.

It is sufficient to argue that, in the limit R → ∞, the electric field scales as 1/R2, as
the leading term in the multipole expansion is the monopole term. Then, the bowl
surface’s area scales as R2 while the Maxwell stress tensor scales as 1/R4 – giving an
overall scaling of 1/R2 for the value of the integral.

Then, it remains to calculate the downward flux through the xy plane. Inside the
sphere, the electric field is zero, so that the Maxwell stress tensor is zero. Outside the
sphere, the electric field is

E =
Q

4πε0R2
r̂.

Noting that, in the xy plane, Ez = 0, which then implies Txz = Tyz = 0 and Tzz =
−(1/2)ε0E

2. So, the electrostatic force acting on the upper shell is

Fupper = ẑ ·
∫
xy

[
↔

T · (−ẑ)] da = −
∫
xy

Tzz da =
Q2

16πε0

∫ ∞

a

dR

R3
=

Q2

32πε0a2

The force required to keep the upper shell in place is equal and opposite,

Fpush = − Q2

32πε0a2
ẑ = − (Q/2)2

4πε0(a
√

2)2
ẑ

The final expression shows that the magnitude of the force is equal to the force between
two point charges Q/2 separated by a distance a

√
2.

4) The current flow is steady, so the continuity equation gives

∂ρ

∂t
+∇ · J = 0 =⇒ 0 = ∇ · (σE) =

1

s

∂

∂s
[sσ(s)Es] =⇒ ∂2V

∂s2
= 0.

Therefore, the potential V (s) varies linearly between the inner and outer cylindrical
shells,

V (s) = V0

(
b− s
b− a

)
Going back to the continuity equation,

0 = σ(∇ · E) + E · ∇σ =⇒ ρ = −ε0
σ
E · ∇σ =

ε0
σ

(
∂V

∂s

)(
∂σ

∂s

)
=

ε0
s

(
V0
b− a

)

5) By the same reasoning in deriving the Fresnel coefficients, the reflected wavevector is in
the plane of incidence and the angle of reflection equals the angle of incidence. Then,

kR = kk̂R = k(ŷ sin θ + ẑ cos θ)



At the interface, the tangential component of the electric field must vanish, therefore,
the reflected electric field is

ER = −x̂E0 cos(kR · r− ωt)

The total magnetic field at z = 0 is

B = BI + BR =
1

c
k̂I × EI +

1

c
k̂R × ER =

1

c
(k̂I − k̂R)× EI

=

[
−2 cos θ

c
ẑ

]
× [x̂E0 cos(ky sin θ − ωt)]

= −ŷ2E0 cos θ

c
cos(ky sin θ − ωt)

The surface current on the interface is then

K =
1

µ0

ẑ×B = x̂
2E0 cos θ

µ0c
cos(ky sin θ − ωt)

For θ = 0, this reduces to Problem 1 of MT2.

6) We take take the transverse electric field to be the same form as the field between
infinite parallel plates,

ETEM = E0 x̂.

We confirm that it satisfies both the electrostatic requirements

∇t · ETEM = 0 and ∇t × ETEM = 0

while also satisfying E
‖
TEM = 0 at the boundaries.

From our TEM recipe (L15), the transverse magnetic field is

BTEM =
1

c
ẑ× ETEM =

E0

c
ŷ

The full expressions for the electric and magnetic fields within the waveguide are then

E(z, t) = x̂E0 cos(kz − ωt) and B(z, t) = ŷ(E0/c) cos(kz − ωt).

From the dispersion relation, ω2 = c2k2, we take positive k = ω/c , as appropriate for

propagation in the positive z direction.

At the wall x = a, the surface normal pointing from the metal into the vacuum is
n̂ = −x̂. Then, the surface charge density is

σ(z, t) = ε0n̂ · E(z, t) = −ε0E0 cos(kz − ωt)

and the surface current density is

K(z, t) =
1

µ0

n̂×B(z, t) = −ẑ E0

µ0c
cos(kz − ωt)



7) Case t < a/c:
The observer at the origin hasn’t received news of the flowing current. Therefore, all
the fields are zero.

Case a/c < t < b/c:
For a filamentary current, the retarded vector potential is

A(r, t) =
µ0

4π

∫
J(r′, tr)

|r− r′|
dV ′ =

µ0

4π

∫
I[tr(r

′)]

|r− r′|
ds′

In terms of the source location, the current is

I[tr(r
′)] =

{
I0 t > 0

0 t < 0
=

{
I0 |r′| < ct

0 elsewhere

Within this time range, the small semicircle always gives its full contribution,

Aa(t) =
µ0

4π

I0
a

∫
a

ds′ =
µ0I0
4πa

(2ax̂) =
µ0I0
2π

x̂.

The two straight segments, each giving equal contributions, yield a total

Aab(t) = 2
µ0

4π
I0x̂

∫ ct

a

dx′

x′
=
µ0I0
2π

ln

(
ct

a

)
x̂

The large semicircle doesn’t contribute in this time range. Therefore, the vector po-
tential at the origin is

A(t) =
µ0I0
2π

[
1 + ln

(
ct

a

)]
x̂

Because the wire remains neutral, the scalar potential is always zero, and the electric
field at the origin is

E(t) = −∂A
∂t

= −µ0I0
2πt

x̂

Case b/c < t:
In this time range, the entire loop gives its full contribution.

The large semicircle’s contribution,

Ab(t) =
µ0

4π

I0
b

∫
b

ds′ =
µ0I0
4πb

(−2bx̂) = −µ0I0
2π

x̂,

cancels the small semicircle’s contribution.

Then, the vector potential at the origin is

A(t) =
µ0I0
2π

ln

(
b

a

)
x̂



The vector potential is now time-independent, so

E(t) = −∂A
∂t

= 0

Case t = a/c:
At this time, the vector potential abruptly jumps from zero to

A0 =
µ0I0
2π

x̂.

We can express this mathematically using the unit step function,

A(t) = A0 θ(t− a/c)

Then, in the neighborhood of t = a/c, using dθ/dx = δ(x),

E(t) = −∂A
∂t

= −A0δ(t− a/c) = −x̂µ0I0
2π

δ(t− a/c)

Realistically, the loop has a self-inductance so that the current can not be discontin-
uous. Furthermore, the wire will have a finite cross-section. Therefore, in reality, at
the origin, we would briefly see a large, but finite, electric field. However, we can
reasonably say what impulse a charge q at the origin at time t = a/c would receive,

∆p =

∫
F dt =

∫
qE dt = −x̂µ0I0q

2π

Case t = b/c:
At this time, the vector potential abruptly jumps back down, undoing the previous
jump. Therefore, in the neighborhood of t = b/c,

E(t) = −∂A
∂t

= +A0δ(t− b/c) = +x̂
µ0I0
2π

δ(t− b/c)

8) At time t = 0, by symmetry, the dipole moment is along the z-axis. The magnitude of
the dipole moment is

p0 = ẑ · p(t = 0) = ρ

∫
hemi

z dV = 2πρ

∫ b

0

r2 dr

∫ 1

0

dξ (rξ) = ρ
πb4

4

In terms of the hemisphere’s charge Q = ρ(2πb3/3), the dipole moment is

p0 =
3

8
Qb

Then, the rotating dipole moment is

p(t) = p0(ẑ cosωt− ŷ sinωt), and p̈(t) = −p0ω2(ẑ cosωt− ŷ sinωt)



In both of the following cases, tr = t− r/c .

At r = x x̂,

E(r, t) =
µ0

4πx
[x̂× (x̂× p̈(tr))] =

µ0p0ω
2

4πx
(−ŷ sinωtr + ẑ cosωtr)

B(r, t) =
1

c
x̂× E =

µ0p0ω
2

4πxc
(−ŷ cosωtr − ẑ sinωtr)

At r = y ŷ,

E(r, t) =
µ0

4πy
[ŷ × (ŷ × p̈(tr))] =

µ0p0ω
2

4πy
ẑ cosωtr

B(r, t) =
1

c
ŷ × E =

µ0p0ω
2

4πyc
x̂ cosωtr

Along the x-axis, the radiation is circularly polarized, and, along the y-axis, the radi-
ation is linearly polarized.


